
A Brief Introduction to Post-Quantum Cryptography

Fernando Virdia

NOVA.ID.FCT
Universidade NOVA de Lisboa

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Outline

Motivation: Cryptography and Quantum Computing

Foundations: New Hardness Assumptions

Standards: The US NIST process

Deployment: Some of the challenges

Slides @ https://fundamental.domains

https://fundamental.domains

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

“Pre-Post-Quantum” Cryptography

Usually cryptography is presented as consisting of two components:

Symmetric cryptography, that deals with secure communications between parties
sharing a secret key or a password

Asymmetric cryptography (or PKC), that deals with allowing distant parties to
agree on such a shared secret over an unsecured channel

Together, they enable the large-scale deployments of cryptography that we see today
on the Internet, and in payment systems.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

“Pre-Post-Quantum” Cryptography

Usually cryptography is presented as consisting of two components:

Symmetric cryptography, that deals with secure communications between parties
sharing a secret key or a password

Asymmetric cryptography (or PKC), that deals with allowing distant parties to
agree on such a shared secret over an unsecured channel

Together, they enable the large-scale deployments of cryptography that we see today
on the Internet, and in payment systems.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

“Pre-Post-Quantum” Cryptography

Usually cryptography is presented as consisting of two components:

Symmetric cryptography, that deals with secure communications between parties
sharing a secret key or a password

Asymmetric cryptography (or PKC), that deals with allowing distant parties to
agree on such a shared secret over an unsecured channel

Together, they enable the large-scale deployments of cryptography that we see today
on the Internet, and in payment systems.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

“Pre-Post-Quantum” Cryptography

Usually cryptography is presented as consisting of two components:

Symmetric cryptography, that deals with secure communications between parties
sharing a secret key or a password

Asymmetric cryptography (or PKC), that deals with allowing distant parties to
agree on such a shared secret over an unsecured channel

Together, they enable the large-scale deployments of cryptography that we see today
on the Internet, and in payment systems.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Both kinds of primitives are constructed using varying degrees of mathematical
structure.

The structure should imply that an adversary trying to break the primitive, needs
to solve some hard mathematical problem.

We formalise these problems into concise “hardness assumptions”.

Part of the job of cryptographers is identifying hardness assumptions, trying to
break them, and constructing primitives from them.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Both kinds of primitives are constructed using varying degrees of mathematical
structure.

The structure should imply that an adversary trying to break the primitive, needs
to solve some hard mathematical problem.

We formalise these problems into concise “hardness assumptions”.

Part of the job of cryptographers is identifying hardness assumptions, trying to
break them, and constructing primitives from them.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Today’s PKC is mostly based on hardness assumptions related to two mathematical
problems:

Factoring
Let p, q be different random primes of similar size, log p ≈ log q.

Given only N = p · q, find p and q.

Discrete logarithms (DLOG)
Let G be a finite group, and g ∈ G be an element generating a large subgroup.
Let x be a random integer in {1, . . . , |⟨g⟩| − 1}.

Given only gx , find x .

These problems received a lot of study, and are used everywhere in software and
hardware.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Today’s PKC is mostly based on hardness assumptions related to two mathematical
problems:

Factoring
Let p, q be different random primes of similar size, log p ≈ log q.

Given only N = p · q, find p and q.

Discrete logarithms (DLOG)
Let G be a finite group, and g ∈ G be an element generating a large subgroup.
Let x be a random integer in {1, . . . , |⟨g⟩| − 1}.

Given only gx , find x .

These problems received a lot of study, and are used everywhere in software and
hardware.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Today’s PKC is mostly based on hardness assumptions related to two mathematical
problems:

Factoring
Let p, q be different random primes of similar size, log p ≈ log q.

Given only N = p · q, find p and q.

Discrete logarithms (DLOG)
Let G be a finite group, and g ∈ G be an element generating a large subgroup.
Let x be a random integer in {1, . . . , |⟨g⟩| − 1}.

Given only gx , find x .

These problems received a lot of study, and are used everywhere in software and
hardware.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Today’s PKC is mostly based on hardness assumptions related to two mathematical
problems:

Factoring
Let p, q be different random primes of similar size, log p ≈ log q.

Given only N = p · q, find p and q.

Discrete logarithms (DLOG)
Let G be a finite group, and g ∈ G be an element generating a large subgroup.
Let x be a random integer in {1, . . . , |⟨g⟩| − 1}.

Given only gx , find x .

These problems received a lot of study, and are used everywhere in software and
hardware.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do we mean by “factoring is hard”?

Intuitively, solving a random instance should require lots of resources
(calculations, memory, energy, money. . .)

To decide if this is the case, we researach algorithms to solve the problem
(cryptanalysis), and find a formula for the cost as a function of the problem’s
parameters (eg., if N = p · q, log N).

For all the attacks known, we use these formulas to choose parameters so that the
cost is “high enough” (Eg., so that it requires ≥ 2128 CPU cycles to solve)

We also research mathematical relations of the problem with similar ones (or
itself)

NOTE: We cannot have absolute certainty that the problem is hard. (Eg., maybe
P = NP)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do we mean by “factoring is hard”?

Intuitively, solving a random instance should require lots of resources
(calculations, memory, energy, money. . .)

To decide if this is the case, we researach algorithms to solve the problem
(cryptanalysis), and find a formula for the cost as a function of the problem’s
parameters (eg., if N = p · q, log N).

For all the attacks known, we use these formulas to choose parameters so that the
cost is “high enough” (Eg., so that it requires ≥ 2128 CPU cycles to solve)

We also research mathematical relations of the problem with similar ones (or
itself)

NOTE: We cannot have absolute certainty that the problem is hard. (Eg., maybe
P = NP)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do we mean by “factoring is hard”?

Intuitively, solving a random instance should require lots of resources
(calculations, memory, energy, money. . .)

To decide if this is the case, we researach algorithms to solve the problem
(cryptanalysis), and find a formula for the cost as a function of the problem’s
parameters (eg., if N = p · q, log N).

For all the attacks known, we use these formulas to choose parameters so that the
cost is “high enough” (Eg., so that it requires ≥ 2128 CPU cycles to solve)

We also research mathematical relations of the problem with similar ones (or
itself)

NOTE: We cannot have absolute certainty that the problem is hard. (Eg., maybe
P = NP)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do we mean by “factoring is hard”?

Intuitively, solving a random instance should require lots of resources
(calculations, memory, energy, money. . .)

To decide if this is the case, we researach algorithms to solve the problem
(cryptanalysis), and find a formula for the cost as a function of the problem’s
parameters (eg., if N = p · q, log N).

For all the attacks known, we use these formulas to choose parameters so that the
cost is “high enough” (Eg., so that it requires ≥ 2128 CPU cycles to solve)

We also research mathematical relations of the problem with similar ones (or
itself)

NOTE: We cannot have absolute certainty that the problem is hard. (Eg., maybe
P = NP)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do we mean by “factoring is hard”?

Intuitively, solving a random instance should require lots of resources
(calculations, memory, energy, money. . .)

To decide if this is the case, we researach algorithms to solve the problem
(cryptanalysis), and find a formula for the cost as a function of the problem’s
parameters (eg., if N = p · q, log N).

For all the attacks known, we use these formulas to choose parameters so that the
cost is “high enough” (Eg., so that it requires ≥ 2128 CPU cycles to solve)

We also research mathematical relations of the problem with similar ones (or
itself)

NOTE: We cannot have absolute certainty that the problem is hard. (Eg., maybe
P = NP)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do we mean by “factoring is hard”?

Intuitively, solving a random instance should require lots of resources
(calculations, memory, energy, money. . .)

To decide if this is the case, we researach algorithms to solve the problem
(cryptanalysis), and find a formula for the cost as a function of the problem’s
parameters (eg., if N = p · q, log N).

For all the attacks known, we use these formulas to choose parameters so that the
cost is “high enough” (Eg., so that it requires ≥ 2128 CPU cycles to solve)

We also research mathematical relations of the problem with similar ones (or
itself)

NOTE: We cannot have absolute certainty that the problem is hard. (Eg., maybe
P = NP)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Example: the hardness of factoring

Let N = p · q for random p, q such that log p ≈ log q.

It takes at most 2
log N

2 ≈ 2log p division attempts (by trying to guess p) to factor.

But there exist much faster attacks, such as the (general number field sieve,
GNFS) that takes

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU operations.

Choosing ln N appropriately, we can make sure the GNFS is too costly to run.
Do we know for sure no better attack exists? No! The only option is to make our best
effort to study the problem and new possible attacks.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Example: the hardness of factoring

Let N = p · q for random p, q such that log p ≈ log q.

It takes at most 2
log N

2 ≈ 2log p division attempts (by trying to guess p) to factor.

But there exist much faster attacks, such as the (general number field sieve,
GNFS) that takes

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU operations.

Choosing ln N appropriately, we can make sure the GNFS is too costly to run.
Do we know for sure no better attack exists? No! The only option is to make our best
effort to study the problem and new possible attacks.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Example: the hardness of factoring

Let N = p · q for random p, q such that log p ≈ log q.

It takes at most 2
log N

2 ≈ 2log p division attempts (by trying to guess p) to factor.

But there exist much faster attacks, such as the (general number field sieve,
GNFS) that takes

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU operations.

Choosing ln N appropriately, we can make sure the GNFS is too costly to run.
Do we know for sure no better attack exists? No! The only option is to make our best
effort to study the problem and new possible attacks.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Example: the hardness of factoring

Let N = p · q for random p, q such that log p ≈ log q.

It takes at most 2
log N

2 ≈ 2log p division attempts (by trying to guess p) to factor.

But there exist much faster attacks, such as the (general number field sieve,
GNFS) that takes

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU operations.

Choosing ln N appropriately, we can make sure the GNFS is too costly to run.
Do we know for sure no better attack exists? No! The only option is to make our best
effort to study the problem and new possible attacks.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Example: the hardness of factoring

Let N = p · q for random p, q such that log p ≈ log q.

It takes at most 2
log N

2 ≈ 2log p division attempts (by trying to guess p) to factor.

But there exist much faster attacks, such as the (general number field sieve,
GNFS) that takes

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU operations.

Choosing ln N appropriately, we can make sure the GNFS is too costly to run.

Do we know for sure no better attack exists? No! The only option is to make our best
effort to study the problem and new possible attacks.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Example: the hardness of factoring

Let N = p · q for random p, q such that log p ≈ log q.

It takes at most 2
log N

2 ≈ 2log p division attempts (by trying to guess p) to factor.

But there exist much faster attacks, such as the (general number field sieve,
GNFS) that takes

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU operations.

Choosing ln N appropriately, we can make sure the GNFS is too costly to run.
Do we know for sure no better attack exists? No! The only option is to make our best
effort to study the problem and new possible attacks.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Questions so far?

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Quantum Computing

Factoring- and DLOG- related hardness assumptions worked well so far. What
changed?

In the 1980s, some physicists started thinking of using quantum mechanical
phenomena to perform computations.

For a long time, very small practical improvements.

In the last decade, a lot of money from industry went into this
technology [MQT18, MN18, AAB+19, Gib19, WFG21]

Quantum computers would represent a new kind of “resource” in the hands of
attackers.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Quantum Computing

Factoring- and DLOG- related hardness assumptions worked well so far. What
changed?

In the 1980s, some physicists started thinking of using quantum mechanical
phenomena to perform computations.

For a long time, very small practical improvements.

In the last decade, a lot of money from industry went into this
technology [MQT18, MN18, AAB+19, Gib19, WFG21]

Quantum computers would represent a new kind of “resource” in the hands of
attackers.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Quantum Computing

Factoring- and DLOG- related hardness assumptions worked well so far. What
changed?

In the 1980s, some physicists started thinking of using quantum mechanical
phenomena to perform computations.

For a long time, very small practical improvements.

In the last decade, a lot of money from industry went into this
technology [MQT18, MN18, AAB+19, Gib19, WFG21]

Quantum computers would represent a new kind of “resource” in the hands of
attackers.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Quantum Computing

Factoring- and DLOG- related hardness assumptions worked well so far. What
changed?

In the 1980s, some physicists started thinking of using quantum mechanical
phenomena to perform computations.

For a long time, very small practical improvements.

In the last decade, a lot of money from industry went into this
technology [MQT18, MN18, AAB+19, Gib19, WFG21]

Quantum computers would represent a new kind of “resource” in the hands of
attackers.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do these computers do?

Say you have a classical computer, a function f and two inputs x and y .

To learn f (x) and f (y) you need to compute f two times.

In a quantum computer (heavily simplifying, including notation):
You encode x and y in a single “superposed” register, as α |x⟩+ β |y⟩ for some
α, β ∈ C.

You compute f once, and obtain α |f (x)⟩+ β |f (y)⟩.

(You can also apply changes to α and β.)

You then read (“measure”) the register.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do these computers do?

Say you have a classical computer, a function f and two inputs x and y .

To learn f (x) and f (y) you need to compute f two times.

In a quantum computer (heavily simplifying, including notation):

You encode x and y in a single “superposed” register, as α |x⟩+ β |y⟩ for some
α, β ∈ C.

You compute f once, and obtain α |f (x)⟩+ β |f (y)⟩.

(You can also apply changes to α and β.)

You then read (“measure”) the register.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do these computers do?

Say you have a classical computer, a function f and two inputs x and y .

To learn f (x) and f (y) you need to compute f two times.

In a quantum computer (heavily simplifying, including notation):
You encode x and y in a single “superposed” register, as α |x⟩+ β |y⟩ for some
α, β ∈ C.

You compute f once, and obtain α |f (x)⟩+ β |f (y)⟩.

(You can also apply changes to α and β.)

You then read (“measure”) the register.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do these computers do?

Say you have a classical computer, a function f and two inputs x and y .

To learn f (x) and f (y) you need to compute f two times.

In a quantum computer (heavily simplifying, including notation):
You encode x and y in a single “superposed” register, as α |x⟩+ β |y⟩ for some
α, β ∈ C.

You compute f once, and obtain α |f (x)⟩+ β |f (y)⟩.

(You can also apply changes to α and β.)

You then read (“measure”) the register.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

What do these computers do?

Say you have a classical computer, a function f and two inputs x and y .

To learn f (x) and f (y) you need to compute f two times.

In a quantum computer (heavily simplifying, including notation):
You encode x and y in a single “superposed” register, as α |x⟩+ β |y⟩ for some
α, β ∈ C.

You compute f once, and obtain α |f (x)⟩+ β |f (y)⟩.

(You can also apply changes to α and β.)

You then read (“measure”) the register.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

If you could read both f (x) and f (y) from α |f (x)⟩+ β |f (y)⟩, it would be free
parallel computation!

Fortunately, not quite. You will read either f (x) with probablity |α|2 or f (y) with
probability |β|2.

(This generalises to any finite number of inputs, not just two.)

Is this really that powerful then? How does it threaten cryptography?

Unfortunately, yes. So far, in the form of two algorithms: Grover’s and Shor’s.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

If you could read both f (x) and f (y) from α |f (x)⟩+ β |f (y)⟩, it would be free
parallel computation!

Fortunately, not quite. You will read either f (x) with probablity |α|2 or f (y) with
probability |β|2.

(This generalises to any finite number of inputs, not just two.)

Is this really that powerful then? How does it threaten cryptography?

Unfortunately, yes. So far, in the form of two algorithms: Grover’s and Shor’s.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

If you could read both f (x) and f (y) from α |f (x)⟩+ β |f (y)⟩, it would be free
parallel computation!

Fortunately, not quite. You will read either f (x) with probablity |α|2 or f (y) with
probability |β|2.

(This generalises to any finite number of inputs, not just two.)

Is this really that powerful then? How does it threaten cryptography?

Unfortunately, yes. So far, in the form of two algorithms: Grover’s and Shor’s.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

If you could read both f (x) and f (y) from α |f (x)⟩+ β |f (y)⟩, it would be free
parallel computation!

Fortunately, not quite. You will read either f (x) with probablity |α|2 or f (y) with
probability |β|2.

(This generalises to any finite number of inputs, not just two.)

Is this really that powerful then? How does it threaten cryptography?

Unfortunately, yes. So far, in the form of two algorithms: Grover’s and Shor’s.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Questions so far?

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

Let L be a list of N different elements, randomly shuffled.

Say you know x ∈ L, but you need to find its index.

Classically, this takes O(N) comparisons.

Grover’s algorithm lets you find x in O(
√

N) superposed comparisons.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

Let L be a list of N different elements, randomly shuffled.

Say you know x ∈ L, but you need to find its index.

Classically, this takes O(N) comparisons.

Grover’s algorithm lets you find x in O(
√

N) superposed comparisons.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

Let L be a list of N different elements, randomly shuffled.

Say you know x ∈ L, but you need to find its index.

Classically, this takes O(N) comparisons.

Grover’s algorithm lets you find x in O(
√

N) superposed comparisons.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

Let L be a list of N different elements, randomly shuffled.

Say you know x ∈ L, but you need to find its index.

Classically, this takes O(N) comparisons.

Grover’s algorithm lets you find x in O(
√

N) superposed comparisons.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

How does it affect cryptography?

Say you have a cipher with 2128 possible secret keys.

Classically, finding the right one takes ≈ 2128 attempts.

Quantumly, it may take ≈
√

2128 = 264 attempts.

Every cipher is automatically weaker! Need keys twice as long!

(See my talk on Friday about why this may not be so clear in practice.)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

How does it affect cryptography?

Say you have a cipher with 2128 possible secret keys.

Classically, finding the right one takes ≈ 2128 attempts.

Quantumly, it may take ≈
√

2128 = 264 attempts.

Every cipher is automatically weaker! Need keys twice as long!

(See my talk on Friday about why this may not be so clear in practice.)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

How does it affect cryptography?

Say you have a cipher with 2128 possible secret keys.

Classically, finding the right one takes ≈ 2128 attempts.

Quantumly, it may take ≈
√

2128 = 264 attempts.

Every cipher is automatically weaker! Need keys twice as long!

(See my talk on Friday about why this may not be so clear in practice.)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Grover’s algorithm

How does it affect cryptography?

Say you have a cipher with 2128 possible secret keys.

Classically, finding the right one takes ≈ 2128 attempts.

Quantumly, it may take ≈
√

2128 = 264 attempts.

Every cipher is automatically weaker! Need keys twice as long!

(See my talk on Friday about why this may not be so clear in practice.)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Shor’s algorithm

Recall the runtime of the best factoring algorithm, GNFS:

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU.

In 1994 Peter Shor develops a quantum algorithm running in
O

(
(log N)2(log log N)(log log log N)

)
quantum operations.

From subexponential in log N (hard!) to poly-logaritmic (easy!)

Worse news: it does not only affect factoring, but also DLOG!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Shor’s algorithm

Recall the runtime of the best factoring algorithm, GNFS:

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU.

In 1994 Peter Shor develops a quantum algorithm running in
O

(
(log N)2(log log N)(log log log N)

)
quantum operations.

From subexponential in log N (hard!) to poly-logaritmic (easy!)

Worse news: it does not only affect factoring, but also DLOG!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Shor’s algorithm

Recall the runtime of the best factoring algorithm, GNFS:

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU.

In 1994 Peter Shor develops a quantum algorithm running in
O

(
(log N)2(log log N)(log log log N)

)
quantum operations.

From subexponential in log N (hard!) to poly-logaritmic (easy!)

Worse news: it does not only affect factoring, but also DLOG!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Shor’s algorithm

Recall the runtime of the best factoring algorithm, GNFS:

exp
((

3
√

64
9 + o(1)

)
(ln N) 1

3 (ln ln N) 2
3

)
CPU.

In 1994 Peter Shor develops a quantum algorithm running in
O

(
(log N)2(log log N)(log log log N)

)
quantum operations.

From subexponential in log N (hard!) to poly-logaritmic (easy!)

Worse news: it does not only affect factoring, but also DLOG!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Questions so far?

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In the span of one algorithm, we lost two families of hardness assumptions.

In particular, the two that most PKC used commercially is based on.

This means that if/once a quantum computer capable of running Shor’s
algorithm, future encrypted communications will be at risk.

It also means that any such encrypted messages shared until then and stored, will
also be at risk of decryption, even if today they are secure.

We need new hardness assumptions, that can’t be solved with quantum computers.
We need “post-quantum” cryptography (PQC).

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In the span of one algorithm, we lost two families of hardness assumptions.

In particular, the two that most PKC used commercially is based on.

This means that if/once a quantum computer capable of running Shor’s
algorithm, future encrypted communications will be at risk.

It also means that any such encrypted messages shared until then and stored, will
also be at risk of decryption, even if today they are secure.

We need new hardness assumptions, that can’t be solved with quantum computers.
We need “post-quantum” cryptography (PQC).

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In the span of one algorithm, we lost two families of hardness assumptions.

In particular, the two that most PKC used commercially is based on.

This means that if/once a quantum computer capable of running Shor’s
algorithm, future encrypted communications will be at risk.

It also means that any such encrypted messages shared until then and stored, will
also be at risk of decryption, even if today they are secure.

We need new hardness assumptions, that can’t be solved with quantum computers.
We need “post-quantum” cryptography (PQC).

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In the span of one algorithm, we lost two families of hardness assumptions.

In particular, the two that most PKC used commercially is based on.

This means that if/once a quantum computer capable of running Shor’s
algorithm, future encrypted communications will be at risk.

It also means that any such encrypted messages shared until then and stored, will
also be at risk of decryption, even if today they are secure.

We need new hardness assumptions, that can’t be solved with quantum computers.
We need “post-quantum” cryptography (PQC).

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Towards Post-Quantum Cryptography

What would this upgrade entail? There are many steps.

Identify new hardness assumptions that resist quantum computing

Design cryptographic primitives based on these, use them to upgrade more
complex protocols

Produce secure implementations and legal standards

Deploy in real-world systems

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Towards Post-Quantum Cryptography

What would this upgrade entail? There are many steps.

Identify new hardness assumptions that resist quantum computing

Design cryptographic primitives based on these, use them to upgrade more
complex protocols

Produce secure implementations and legal standards

Deploy in real-world systems

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Towards Post-Quantum Cryptography

What would this upgrade entail? There are many steps.

Identify new hardness assumptions that resist quantum computing

Design cryptographic primitives based on these, use them to upgrade more
complex protocols

Produce secure implementations and legal standards

Deploy in real-world systems

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Towards Post-Quantum Cryptography

What would this upgrade entail? There are many steps.

Identify new hardness assumptions that resist quantum computing

Design cryptographic primitives based on these, use them to upgrade more
complex protocols

Produce secure implementations and legal standards

Deploy in real-world systems

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Towards Post-Quantum Cryptography

What would this upgrade entail? There are many steps.

Identify new hardness assumptions that resist quantum computing

Design cryptographic primitives based on these, use them to upgrade more
complex protocols

Produce secure implementations and legal standards

Deploy in real-world systems

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let’s start with the assumptions. There’s many kinds, some newer, some older.

A variety of mathematical structures are used. A very non-exhaustive list includes:

Error-correcting codes (ECC)

Polynomial rings and algebraic lattices

Multivariate quadratic equation systems (MQ)

Lattice-based and isogeny-based cryptography will be explained at AS Crypto on
Tuesday!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let’s start with the assumptions. There’s many kinds, some newer, some older.

A variety of mathematical structures are used. A very non-exhaustive list includes:

Error-correcting codes (ECC)

Polynomial rings and algebraic lattices

Multivariate quadratic equation systems (MQ)

Lattice-based and isogeny-based cryptography will be explained at AS Crypto on
Tuesday!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let’s start with the assumptions. There’s many kinds, some newer, some older.

A variety of mathematical structures are used. A very non-exhaustive list includes:

Error-correcting codes (ECC)

Polynomial rings and algebraic lattices

Multivariate quadratic equation systems (MQ)

Lattice-based and isogeny-based cryptography will be explained at AS Crypto on
Tuesday!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Mathematical refresher: polynomials

Given a ring like the integers Z or the integers modulo q, Zq,

and an unknown variable x ,

one can define the ring of polynomials Z[x] with elements p(x) such that:
p(x) = p0 + p1 · x + p2 · x2 + · · ·+ pn · xn,

where p0, . . . , pn ∈ Z. We say n is the degree of p.

We can add, multiply, and divide polynomials.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Mathematical refresher: polynomials

Given a ring like the integers Z or the integers modulo q, Zq,

and an unknown variable x ,

one can define the ring of polynomials Z[x] with elements p(x) such that:
p(x) = p0 + p1 · x + p2 · x2 + · · ·+ pn · xn,

where p0, . . . , pn ∈ Z. We say n is the degree of p.

We can add, multiply, and divide polynomials.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Mathematical refresher: polynomials

Given a ring like the integers Z or the integers modulo q, Zq,

and an unknown variable x ,

one can define the ring of polynomials Z[x] with elements p(x) such that:
p(x) = p0 + p1 · x + p2 · x2 + · · ·+ pn · xn,

where p0, . . . , pn ∈ Z. We say n is the degree of p.

We can add, multiply, and divide polynomials.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Mathematical refresher: polynomials

Given a ring like the integers Z or the integers modulo q, Zq,

and an unknown variable x ,

one can define the ring of polynomials Z[x] with elements p(x) such that:
p(x) = p0 + p1 · x + p2 · x2 + · · ·+ pn · xn,

where p0, . . . , pn ∈ Z. We say n is the degree of p.

We can add, multiply, and divide polynomials.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Mathematical refresher: polynomials

Given a ring like the integers Z or the integers modulo q, Zq,

and an unknown variable x ,

one can define the ring of polynomials Z[x] with elements p(x) such that:
p(x) = p0 + p1 · x + p2 · x2 + · · ·+ pn · xn,

where p0, . . . , pn ∈ Z. We say n is the degree of p.

We can add, multiply, and divide polynomials.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Mathematical refresher: polynomials

Given a ring like the integers Z or the integers modulo q, Zq,

and an unknown variable x ,

one can define the ring of polynomials Z[x] with elements p(x) such that:
p(x) = p0 + p1 · x + p2 · x2 + · · ·+ pn · xn,

where p0, . . . , pn ∈ Z. We say n is the degree of p.

We can add, multiply, and divide polynomials.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

PQC from error-correcting codes

Originally ECC are used for communication over noisy channels, they allow to recover
a clean signal from a damaged one

A famous cryptographic construction is from McEliece:
Let G be a matrix generating a binary ECC of dimension k, correcting t errors

Let S be a k × k random invertible matrix, and P a n × n permutation matrix

Given a message m ∈ {0, 1}k , encode it and perturb it on t indices, using
z ∈ {0, 1}n of Hamming weight t.

The hardness assumption [McE78]
Dados t, Gpub := SGP y c := mGpub ⊕ z, recuperar m

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

PQC from error-correcting codes

Originally ECC are used for communication over noisy channels, they allow to recover
a clean signal from a damaged one

A famous cryptographic construction is from McEliece:
Let G be a matrix generating a binary ECC of dimension k, correcting t errors

Let S be a k × k random invertible matrix, and P a n × n permutation matrix

Given a message m ∈ {0, 1}k , encode it and perturb it on t indices, using
z ∈ {0, 1}n of Hamming weight t.

The hardness assumption [McE78]
Dados t, Gpub := SGP y c := mGpub ⊕ z, recuperar m

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

PQC from error-correcting codes

Originally ECC are used for communication over noisy channels, they allow to recover
a clean signal from a damaged one

A famous cryptographic construction is from McEliece:
Let G be a matrix generating a binary ECC of dimension k, correcting t errors

Let S be a k × k random invertible matrix, and P a n × n permutation matrix

Given a message m ∈ {0, 1}k , encode it and perturb it on t indices, using
z ∈ {0, 1}n of Hamming weight t.

The hardness assumption [McE78]
Dados t, Gpub := SGP y c := mGpub ⊕ z, recuperar m

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

PQC using polynomial rings

Let
n, q ∈ Z and ϕ ∈ Z[x] be a monic irreducible polynomial of degree n,

Rq := Zq[x]/(ϕ),

f ∈ R×
q and g ∈ Rq be polynomials with small coefficients (eg. in {−1, 0, 1}).

NTRU [HPS98]
Given h := g/f mod q, recover g or f .

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

PQC using polynomial rings

Let
n, q ∈ Z and ϕ ∈ Z[x] be a monic irreducible polynomial of degree n,

Rq := Zq[x]/(ϕ),

f ∈ R×
q and g ∈ Rq be polynomials with small coefficients (eg. in {−1, 0, 1}).

NTRU [HPS98]
Given h := g/f mod q, recover g or f .

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

More PQC using polynomial rings
Let

k, q ∈ Z, n := 2k y ϕ = xn + 1,

Rq := Zq[x]/(ϕ),

a← U(Rq), and s, e ∈ Rq sampled such that the coefficients follow a Gaussian
distribution rounded to the nearest integer in [−q/2, q/2).

Search Ring Learning With Errors (RLWE) [Reg05, SSTX09, LPR10]
Given (a, b := a · s + e mod q) ∈ Rq ×Rq, recover s.

Decision Ring Learning With Errors (RLWE) [Reg05, SSTX09, LPR10]
Given (a, b) ∈ Rq ×Rq, guess whether b ∼ U(Rq) o si b = a · s + e mod q.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

More PQC using polynomial rings
Let

k, q ∈ Z, n := 2k y ϕ = xn + 1,

Rq := Zq[x]/(ϕ),

a← U(Rq), and s, e ∈ Rq sampled such that the coefficients follow a Gaussian
distribution rounded to the nearest integer in [−q/2, q/2).

Search Ring Learning With Errors (RLWE) [Reg05, SSTX09, LPR10]
Given (a, b := a · s + e mod q) ∈ Rq ×Rq, recover s.

Decision Ring Learning With Errors (RLWE) [Reg05, SSTX09, LPR10]
Given (a, b) ∈ Rq ×Rq, guess whether b ∼ U(Rq) o si b = a · s + e mod q.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

More PQC using polynomial rings
Let

k, q ∈ Z, n := 2k y ϕ = xn + 1,

Rq := Zq[x]/(ϕ),

a← U(Rq), and s, e ∈ Rq sampled such that the coefficients follow a Gaussian
distribution rounded to the nearest integer in [−q/2, q/2).

Search Ring Learning With Errors (RLWE) [Reg05, SSTX09, LPR10]
Given (a, b := a · s + e mod q) ∈ Rq ×Rq, recover s.

Decision Ring Learning With Errors (RLWE) [Reg05, SSTX09, LPR10]
Given (a, b) ∈ Rq ×Rq, guess whether b ∼ U(Rq) o si b = a · s + e mod q.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

PQC from multivariate quadratic equation systems

Let
q, n, m ∈ Z be integers and Fq be the finite field of q elements,

p1(x), . . . , pm(x) be quadratic polynomials over n variables x = (x1, . . . , xn).

Multivariate Quadratic (MQ)
Given the p1, . . . , pm polynomials, find a solution y to the system
of equations p1(y) = · · · = pm(y) = 0 mod q, if it exists.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

PQC from multivariate quadratic equation systems

Let
q, n, m ∈ Z be integers and Fq be the finite field of q elements,

p1(x), . . . , pm(x) be quadratic polynomials over n variables x = (x1, . . . , xn).

Multivariate Quadratic (MQ)
Given the p1, . . . , pm polynomials, find a solution y to the system
of equations p1(y) = · · · = pm(y) = 0 mod q, if it exists.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Questions so far?

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Given new assumptions, one needs new designs.

Sometimes similarities between “pre-quantum” and “post-quantum” assuptions
means the designs can be similar.

Even in those cases subtle difference may be introduced.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Given new assumptions, one needs new designs.

Sometimes similarities between “pre-quantum” and “post-quantum” assuptions
means the designs can be similar.

Even in those cases subtle difference may be introduced.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Given new assumptions, one needs new designs.

Sometimes similarities between “pre-quantum” and “post-quantum” assuptions
means the designs can be similar.

Even in those cases subtle difference may be introduced.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

For example, there are some similarities between LWE variants and DLOG:

Similarity between RLWE and DLOG
“given (a, a · s + e), recover s” ∼ “given (g , gx), recover x”

Let’s try using this to port a DLOG primitive to RLWE.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

For example, there are some similarities between LWE variants and DLOG:

Similarity between RLWE and DLOG
“given (a, a · s + e), recover s” ∼ “given (g , gx), recover x”

Let’s try using this to port a DLOG primitive to RLWE.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

For example, there are some similarities between LWE variants and DLOG:

Similarity between RLWE and DLOG
“given (a, a · s + e), recover s” ∼ “given (g , gx), recover x”

Let’s try using this to port a DLOG primitive to RLWE.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

I will be presenting passively-secure ElGamal encryption

This is a classic public-key encryption scheme, very close to Diffie-Hellman key
exchange

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

I will be presenting passively-secure ElGamal encryption

This is a classic public-key encryption scheme, very close to Diffie-Hellman key
exchange

Alice Bob

𝑠𝑘, 𝑝𝑘 = 𝐾𝐺𝑒𝑛()

𝑐 = 𝐸𝑛𝑐(𝑝𝑘,𝑚)

𝑚 ∈ ℳ

𝑐

𝑚 = 𝐷𝑒𝑐(𝑠𝑘, 𝑐)

𝑝𝑘

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

I will be presenting passively-secure ElGamal encryption

This is a classic public-key encryption scheme, very close to Diffie-Hellman key
exchange

Alice Bob

𝑠𝑘, 𝑝𝑘 = 𝐾𝐺𝑒𝑛()

𝑐 = 𝐸𝑛𝑐(𝑝𝑘,𝑚)

𝑚 ∈ ℳ

𝑐

𝑚 = 𝐷𝑒𝑐(𝑠𝑘, 𝑐)

𝑝𝑘

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

I will be presenting passively-secure ElGamal encryption

This is a classic public-key encryption scheme, very close to Diffie-Hellman key
exchange

Alice Bob

𝑠𝑘, 𝑝𝑘 = 𝐾𝐺𝑒𝑛()

𝑐 = 𝐸𝑛𝑐(𝑝𝑘,𝑚)

𝑚 ∈ ℳ

𝑐

𝑚 = 𝐷𝑒𝑐(𝑠𝑘, 𝑐)

𝑝𝑘

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.
KGen():

sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x

= (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x

= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q .

Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,

m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|),

sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,

m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx),

pk ← (a, b := a · s + e),

Enc(pk, m):
y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,

m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|),

(r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,

m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy ,

c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,

m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m,

c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,

m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,

m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉ =

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉ =

⌊

q
2 ·m + e · r − s · f + f ′

⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ←

⌊

c2− s · c1

⌉

=

⌊

(b · r + f ′ + q
2 ·m)− s · (a · r + f)

⌉

=

⌊

q
2 ·m + e · r − s · f + f ′

⌉
= q

2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ← ⌊c2− s · c1⌉ = ⌊(b · r + f ′ + q

2 ·m)− s · (a · r + f)⌉ = ⌊q
2 ·m + e · r − s · f + f ′⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Let ⟨g⟩ be a large subgroup of F×
q . Let a ∼ U(Zq[x]/⟨ϕ⟩), ϕ = xn + 1.

KGen():
sk ← x ∼ U(Z|⟨g⟩|), sk ← (s, e) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

pk ← (g , h := gx), pk ← (a, b := a · s + e),
Enc(pk, m):

y ∼ U(Z|⟨g⟩|), (r , f , f ′) ∼ U(Z2[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩)× χ(Zq[x]/⟨ϕ⟩),

c1 ← gy , c1 ← a · r + f ,

c2 ← hy ·m, c2 ← b · r + f ′ + q
2 ·m,

Dec(sk, (c1, c2)):
m′ ← c2/cx

1 = hy ·m/gy x = (gx)y ·m/gy x= m,
m′ ← ⌊c2− s · c1⌉ = ⌊(b · r + f ′ + q

2 ·m)− s · (a · r + f)⌉ = ⌊q
2 ·m + e · r − s · f + f ′⌉

= q
2 ·m with high probability.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Questions so far?

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Secure implementations and legal standards

Secure implementations is a giant field in cryptography

It is not specific to post-quantum cryptography, so I will not be covering it

However lots of post-quantum research is going on, as deployment gets closer

Keep an eye on the CHES conference publications: https://tches.iacr.org

https://tches.iacr.org

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Secure implementations and legal standards

Secure implementations is a giant field in cryptography

It is not specific to post-quantum cryptography, so I will not be covering it

However lots of post-quantum research is going on, as deployment gets closer

Keep an eye on the CHES conference publications: https://tches.iacr.org

https://tches.iacr.org

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Secure implementations and legal standards

Secure implementations is a giant field in cryptography

It is not specific to post-quantum cryptography, so I will not be covering it

However lots of post-quantum research is going on, as deployment gets closer

Keep an eye on the CHES conference publications: https://tches.iacr.org

https://tches.iacr.org

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In terms of standardisation, multiple processes are ongoing.

The most prominent effort has been run by the US National Institute of Standards
and Technology (NIST).

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In terms of standardisation, multiple processes are ongoing.

The most prominent effort has been run by the US National Institute of Standards
and Technology (NIST).

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In terms of standardisation, multiple processes are ongoing.

The most prominent effort has been run by the US National Institute of Standards
and Technology (NIST).

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In 2016 they made an open call for proposals to design post-quantum digital
signatures (DSA) and key encapsulation mechanisms (KEM, think: PKE)

In 2017 the 69 submissions were presented.

After multiple review rounds, in 2023 the first draft standards have been posted for
comment, https://csrc.nist.gov/projects/post-quantum-cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In 2016 they made an open call for proposals to design post-quantum digital
signatures (DSA) and key encapsulation mechanisms (KEM, think: PKE)

In 2017 the 69 submissions were presented.

After multiple review rounds, in 2023 the first draft standards have been posted for
comment, https://csrc.nist.gov/projects/post-quantum-cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In 2016 they made an open call for proposals to design post-quantum digital
signatures (DSA) and key encapsulation mechanisms (KEM, think: PKE)

In 2017 the 69 submissions were presented.

After multiple review rounds, in 2023 the first draft standards have been posted for
comment, https://csrc.nist.gov/projects/post-quantum-cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Four algorithms are being standardised:

ML-KEM: a lattice-based KEM proposed with the name Kyber

ML-DSA and NT-DSA: two lattice-based signature schemes proposed as Dilithium
and Falcon

SLH-DSA: a hash-based signature scheme known as Sphincs+

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Four algorithms are being standardised:

ML-KEM: a lattice-based KEM proposed with the name Kyber

ML-DSA and NT-DSA: two lattice-based signature schemes proposed as Dilithium
and Falcon

SLH-DSA: a hash-based signature scheme known as Sphincs+

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Four algorithms are being standardised:

ML-KEM: a lattice-based KEM proposed with the name Kyber

ML-DSA and NT-DSA: two lattice-based signature schemes proposed as Dilithium
and Falcon

SLH-DSA: a hash-based signature scheme known as Sphincs+

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Four algorithms are being standardised:

ML-KEM: a lattice-based KEM proposed with the name Kyber

ML-DSA and NT-DSA: two lattice-based signature schemes proposed as Dilithium
and Falcon

SLH-DSA: a hash-based signature scheme known as Sphincs+

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Meanwhile, some more KEM schemes are still in consideration as part of the
original process

NIST also started a second process exclusively for more digital signatures

Discussions about standardisation can be followed on
https://csrc.nist.gov/Projects/post-quantum-cryptography/Email-List

https://csrc.nist.gov/Projects/post-quantum-cryptography/Email-List

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Meanwhile, some more KEM schemes are still in consideration as part of the
original process

NIST also started a second process exclusively for more digital signatures

Discussions about standardisation can be followed on
https://csrc.nist.gov/Projects/post-quantum-cryptography/Email-List

https://csrc.nist.gov/Projects/post-quantum-cryptography/Email-List

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Ok, we have new hardness assumptions, primitives, and standards. We can deploy,
right?

Not so easy in practice!

PQC algorithms tend to have larger public keys and/or ciphertexts!
RSA (128-bits security): |pk| = |c| = 384 B (signatures: |σ| = 384 B)

EC-ElGamal (128-bit security): |pk| = 32 B, |c| = 64 B (signatures: |σ| = 65 B)

ML-KEM (128-bit security): |pk| = 800 B, |c| = 768 B

SLH-DSA (128-bit security): |pk| = 32 B, |σ| = 7856 B

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Ok, we have new hardness assumptions, primitives, and standards. We can deploy,
right?

Not so easy in practice!

PQC algorithms tend to have larger public keys and/or ciphertexts!
RSA (128-bits security): |pk| = |c| = 384 B (signatures: |σ| = 384 B)

EC-ElGamal (128-bit security): |pk| = 32 B, |c| = 64 B (signatures: |σ| = 65 B)

ML-KEM (128-bit security): |pk| = 800 B, |c| = 768 B

SLH-DSA (128-bit security): |pk| = 32 B, |σ| = 7856 B

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Ok, we have new hardness assumptions, primitives, and standards. We can deploy,
right?

Not so easy in practice!

PQC algorithms tend to have larger public keys and/or ciphertexts!

RSA (128-bits security): |pk| = |c| = 384 B (signatures: |σ| = 384 B)

EC-ElGamal (128-bit security): |pk| = 32 B, |c| = 64 B (signatures: |σ| = 65 B)

ML-KEM (128-bit security): |pk| = 800 B, |c| = 768 B

SLH-DSA (128-bit security): |pk| = 32 B, |σ| = 7856 B

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Ok, we have new hardness assumptions, primitives, and standards. We can deploy,
right?

Not so easy in practice!

PQC algorithms tend to have larger public keys and/or ciphertexts!
RSA (128-bits security): |pk| = |c| = 384 B

(signatures: |σ| = 384 B)

EC-ElGamal (128-bit security): |pk| = 32 B, |c| = 64 B

(signatures: |σ| = 65 B)

ML-KEM (128-bit security): |pk| = 800 B, |c| = 768 B

SLH-DSA (128-bit security): |pk| = 32 B, |σ| = 7856 B

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Ok, we have new hardness assumptions, primitives, and standards. We can deploy,
right?

Not so easy in practice!

PQC algorithms tend to have larger public keys and/or ciphertexts!
RSA (128-bits security): |pk| = |c| = 384 B

(signatures: |σ| = 384 B)

EC-ElGamal (128-bit security): |pk| = 32 B, |c| = 64 B

(signatures: |σ| = 65 B)

ML-KEM (128-bit security): |pk| = 800 B, |c| = 768 B

SLH-DSA (128-bit security): |pk| = 32 B, |σ| = 7856 B

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Ok, we have new hardness assumptions, primitives, and standards. We can deploy,
right?

Not so easy in practice!

PQC algorithms tend to have larger public keys and/or ciphertexts!
RSA (128-bits security): |pk| = |c| = 384 B (signatures: |σ| = 384 B)

EC-ElGamal (128-bit security): |pk| = 32 B, |c| = 64 B (signatures: |σ| = 65 B)

ML-KEM (128-bit security): |pk| = 800 B, |c| = 768 B

SLH-DSA (128-bit security): |pk| = 32 B, |σ| = 7856 B

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Ok, we have new hardness assumptions, primitives, and standards. We can deploy,
right?

Not so easy in practice!

PQC algorithms tend to have larger public keys and/or ciphertexts!
RSA (128-bits security): |pk| = |c| = 384 B (signatures: |σ| = 384 B)

EC-ElGamal (128-bit security): |pk| = 32 B, |c| = 64 B (signatures: |σ| = 65 B)

ML-KEM (128-bit security): |pk| = 800 B, |c| = 768 B

SLH-DSA (128-bit security): |pk| = 32 B, |σ| = 7856 B

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Why is this a problem?

If your protocol sends a lot of keys, ciphertext or signatures, increased cost and
delays

Even worse: what if your protocol implementation assumes fixed sizes?
unsigned char ciphertext[64]

A lot of sensitive code will need rewriting, with all the risks that follow! (Eg.,
CVE-2022-21449: Psychic Signatures in Java)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Why is this a problem?

If your protocol sends a lot of keys, ciphertext or signatures, increased cost and
delays

Even worse: what if your protocol implementation assumes fixed sizes?
unsigned char ciphertext[64]

A lot of sensitive code will need rewriting, with all the risks that follow! (Eg.,
CVE-2022-21449: Psychic Signatures in Java)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Why is this a problem?

If your protocol sends a lot of keys, ciphertext or signatures, increased cost and
delays

Even worse: what if your protocol implementation assumes fixed sizes?
unsigned char ciphertext[64]

A lot of sensitive code will need rewriting, with all the risks that follow! (Eg.,
CVE-2022-21449: Psychic Signatures in Java)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Why is this a problem?

If your protocol sends a lot of keys, ciphertext or signatures, increased cost and
delays

Even worse: what if your protocol implementation assumes fixed sizes?
unsigned char ciphertext[64]

A lot of sensitive code will need rewriting, with all the risks that follow! (Eg.,
CVE-2022-21449: Psychic Signatures in Java)

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Not only issues with size.

Some of these problems have not been studied as much. Could they break?

Even though RSA and DLOG existed since the 70s, and stadards like PKCS #1
v1.1 dates back to 1992, their cryptanalysis was not stable until the
mid-90s [Len93].

In the same way, schemes like Rainbow (a NIST signature scheme finalist first
defined in 2005) was fully broken by Beullens in 2022 [Beu22].

And the SIKE scheme (a NIST KEM finalist, defined in 2011) was fully broken in
2022 [CD23]

A lot of work in cryptanalysis left to do!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Not only issues with size.

Some of these problems have not been studied as much. Could they break?

Even though RSA and DLOG existed since the 70s, and stadards like PKCS #1
v1.1 dates back to 1992, their cryptanalysis was not stable until the
mid-90s [Len93].

In the same way, schemes like Rainbow (a NIST signature scheme finalist first
defined in 2005) was fully broken by Beullens in 2022 [Beu22].

And the SIKE scheme (a NIST KEM finalist, defined in 2011) was fully broken in
2022 [CD23]

A lot of work in cryptanalysis left to do!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Not only issues with size.

Some of these problems have not been studied as much. Could they break?

Even though RSA and DLOG existed since the 70s, and stadards like PKCS #1
v1.1 dates back to 1992, their cryptanalysis was not stable until the
mid-90s [Len93].

In the same way, schemes like Rainbow (a NIST signature scheme finalist first
defined in 2005) was fully broken by Beullens in 2022 [Beu22].

And the SIKE scheme (a NIST KEM finalist, defined in 2011) was fully broken in
2022 [CD23]

A lot of work in cryptanalysis left to do!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Not only issues with size.

Some of these problems have not been studied as much. Could they break?

Even though RSA and DLOG existed since the 70s, and stadards like PKCS #1
v1.1 dates back to 1992, their cryptanalysis was not stable until the
mid-90s [Len93].

In the same way, schemes like Rainbow (a NIST signature scheme finalist first
defined in 2005) was fully broken by Beullens in 2022 [Beu22].

And the SIKE scheme (a NIST KEM finalist, defined in 2011) was fully broken in
2022 [CD23]

A lot of work in cryptanalysis left to do!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Not only issues with size.

Some of these problems have not been studied as much. Could they break?

Even though RSA and DLOG existed since the 70s, and stadards like PKCS #1
v1.1 dates back to 1992, their cryptanalysis was not stable until the
mid-90s [Len93].

In the same way, schemes like Rainbow (a NIST signature scheme finalist first
defined in 2005) was fully broken by Beullens in 2022 [Beu22].

And the SIKE scheme (a NIST KEM finalist, defined in 2011) was fully broken in
2022 [CD23]

A lot of work in cryptanalysis left to do!

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

But we need PQC as soon as possible!

Use hybrid schemes!

For PKE: encrypt with EC-ElGamal, and encrypt the result with ML-KEM

For signatures: sign with (say) EC-DSA and ML-DSA, verify both signatures

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

But we need PQC as soon as possible!

Use hybrid schemes!

For PKE: encrypt with EC-ElGamal, and encrypt the result with ML-KEM

For signatures: sign with (say) EC-DSA and ML-DSA, verify both signatures

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

But we need PQC as soon as possible!

Use hybrid schemes!

For PKE: encrypt with EC-ElGamal, and encrypt the result with ML-KEM

For signatures: sign with (say) EC-DSA and ML-DSA, verify both signatures

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

But we need PQC as soon as possible!

Use hybrid schemes!

For PKE: encrypt with EC-ElGamal, and encrypt the result with ML-KEM

For signatures: sign with (say) EC-DSA and ML-DSA, verify both signatures

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Conclusions
PQC has received a significant boost in research and industry effort

Regardless of whether QC ever happen, legal requirements mean that PQC will be
deployed in the near term future

Lots of research is currently happening: theoretical and practical issues remain
open, and make for a good space to perform research

Thank you
Slides @ https://fundamental.domains

https://fundamental.domains

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Conclusions
PQC has received a significant boost in research and industry effort

Regardless of whether QC ever happen, legal requirements mean that PQC will be
deployed in the near term future

Lots of research is currently happening: theoretical and practical issues remain
open, and make for a good space to perform research

Thank you
Slides @ https://fundamental.domains

https://fundamental.domains

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Conclusions
PQC has received a significant boost in research and industry effort

Regardless of whether QC ever happen, legal requirements mean that PQC will be
deployed in the near term future

Lots of research is currently happening: theoretical and practical issues remain
open, and make for a good space to perform research

Thank you
Slides @ https://fundamental.domains

https://fundamental.domains

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Conclusions
PQC has received a significant boost in research and industry effort

Regardless of whether QC ever happen, legal requirements mean that PQC will be
deployed in the near term future

Lots of research is currently happening: theoretical and practical issues remain
open, and make for a good space to perform research

Thank you
Slides @ https://fundamental.domains

https://fundamental.domains

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas,
Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben
Chiaro, Roberto Collins, and William et al. Courtney.
Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, Oct 2019.

Ward Beullens.
Breaking rainbow takes a weekend on a laptop.
IACR Cryptol. ePrint Arch., page 214, 2022.

Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen.
On the hardness of module-lwe with binary secret.
In Cryptographers’ Track at the RSA Conference, pages 503–526. Springer, 2021.

Wouter Castryck and Thomas Decru.
An efficient key recovery attack on sidh.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
423–447. Springer, 2023.

Elizabeth Gibney.
Quantum gold rush: the private funding pouring into quantum start-ups.
Nature, 574(7776):22–24, October 2019.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.
NTRU: A ring-based public key cryptosystem.

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

In Third Algorithmic Number Theory Symposium (ANTS), volume 1423 of LNCS, pages 267–288.
Springer, Heidelberg, June 1998.

Paul Kirchner and Pierre-Alain Fouque.
An improved bkw algorithm for lwe with applications to cryptography and lattices.
In Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I 35, pages 43–62. Springer, 2015.

H. W. Lenstra.
The number field sieve: An annotated bibliography.
In Arjen K. Lenstra and Hendrik W. Lenstra, editors, The development of the number field sieve, pages
1–3, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
On ideal lattices and learning with errors over rings.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

Robert J. McEliece.
A public-key cryptosystem based on algebraic coding theory.
The deep space network progress report 42-44, Jet Propulsion Laboratory, California Institute of
Technology, January/February 1978.
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF.

Daniele Micciancio.
On the hardness of learning with errors with binary secrets.

https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

Pre-Quantum Crypto Quantum Computing Hardness Assumptions Primitives: an Example Implementations and Standards Deployment Conclusion

Theory of Computing, 14(1):1–17, 2018.

Samuel K. Moore and Amy Nordrum.
Intel’s new path to quantum computing.
IEEE Spectrum, 2018.

Microsoft Quantum Team.
Developing a topological qubit.
Cloud Perspectives Blog, 2018.

Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa.
Efficient public key encryption based on ideal lattices.
In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635. Springer,
Heidelberg, December 2009.

Chao Sun, Mehdi Tibouchi, and Masayuki Abe.
Revisiting the hardness of binary error lwe.
In Australasian Conference on Information Security and Privacy, pages 425–444. Springer, 2020.

Karl Wehden, Ismael Faro, and Jay Gambetta.
IBM’s roadmap for building an open quantum software ecosystem.
IBM Research Blog, 2021.

	Pre-Quantum Crypto
	Quantum Computing
	Hardness Assumptions
	Primitives: an Example
	Implementations and Standards
	Deployment
	Conclusion

