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I have a big defect, I’m a contrarian. This whole talk is me going ”well, actually”.

Does Grover key-search really work? [JNRV20]

Does quantum lattice sieving really work? [AGPS20]

Does quantum lattice enumeration really work? [BBTV23]

Disclaimer
I don’t know. Opinion: I think as currently stated, no.
However we never know, these are just arguments against them.



Intro Quantum Cryptanalysis Grover key-search Quantum Sieving Quantum Enumeration Conclusions

I have a big defect, I’m a contrarian. This whole talk is me going ”well, actually”.

Does Grover key-search really work? [JNRV20]

Does quantum lattice sieving really work? [AGPS20]

Does quantum lattice enumeration really work? [BBTV23]

Disclaimer
I don’t know. Opinion: I think as currently stated, no.
However we never know, these are just arguments against them.



Intro Quantum Cryptanalysis Grover key-search Quantum Sieving Quantum Enumeration Conclusions

I have a big defect, I’m a contrarian. This whole talk is me going ”well, actually”.

Does Grover key-search really work? [JNRV20]

Does quantum lattice sieving really work? [AGPS20]

Does quantum lattice enumeration really work? [BBTV23]

Disclaimer
I don’t know. Opinion: I think as currently stated, no.
However we never know, these are just arguments against them.



Intro Quantum Cryptanalysis Grover key-search Quantum Sieving Quantum Enumeration Conclusions

I have a big defect, I’m a contrarian. This whole talk is me going ”well, actually”.

Does Grover key-search really work? [JNRV20]

Does quantum lattice sieving really work? [AGPS20]

Does quantum lattice enumeration really work? [BBTV23]

Disclaimer
I don’t know. Opinion: I think as currently stated, no.
However we never know, these are just arguments against them.



Intro Quantum Cryptanalysis Grover key-search Quantum Sieving Quantum Enumeration Conclusions

I have a big defect, I’m a contrarian. This whole talk is me going ”well, actually”.

Does Grover key-search really work? [JNRV20]

Does quantum lattice sieving really work? [AGPS20]

Does quantum lattice enumeration really work? [BBTV23]

Disclaimer
I don’t know.

Opinion: I think as currently stated, no.
However we never know, these are just arguments against them.



Intro Quantum Cryptanalysis Grover key-search Quantum Sieving Quantum Enumeration Conclusions

I have a big defect, I’m a contrarian. This whole talk is me going ”well, actually”.

Does Grover key-search really work? [JNRV20]

Does quantum lattice sieving really work? [AGPS20]

Does quantum lattice enumeration really work? [BBTV23]

Disclaimer
I don’t know. Opinion: I think as currently stated, no.

However we never know, these are just arguments against them.



Intro Quantum Cryptanalysis Grover key-search Quantum Sieving Quantum Enumeration Conclusions

I have a big defect, I’m a contrarian. This whole talk is me going ”well, actually”.

Does Grover key-search really work? [JNRV20]

Does quantum lattice sieving really work? [AGPS20]

Does quantum lattice enumeration really work? [BBTV23]

Disclaimer
I don’t know. Opinion: I think as currently stated, no.
However we never know, these are just arguments against them.



Intro Quantum Cryptanalysis Grover key-search Quantum Sieving Quantum Enumeration Conclusions

Let’s step back. There are mostly two kinds of quantum cryptanalysis:

Algorithms turning hard problems into easy ones (e.g., Shor’s)

Algorithms turning hard problems into
√

hard problems (e.g., Grover’s)

The first kind usually looks entirely different from the classical known attacks

The second kind are usually used as “black-box” subroutines to classical attacks

I will be talking about the latter.
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Quantum computation
Let X be a finite set. Attacks often use three “operations”:

Evaluating f

Uf ·
∑
x∈X

cx |x⟩ |0⟩ 7→
∑
x∈X

cx |x⟩ |f (x)⟩ , for cx ∈ C and
∑
x∈X
|cx |2 = 1

Modifying the amplitudes cx

Uamp ·
∑
x∈X

cx |x⟩ |f (x)⟩ 7→
∑
x∈X

dx |x⟩ |f (x)⟩ , for dx ∈ C and
∑
x∈X
|dx |2 = 1

and some x such that cx ̸= dx .

Measuring the register∑
x∈X

dx |x⟩ |f (x)⟩ 7→ |x0⟩ |f (x0)⟩ , for some x0 ∈ X with probability |dx0 |2
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This is a quantum circuit of width 3, depth 5 and gate count 5.

Comparing cost with classical circuits
We can compare the # of quantum gates with classical cycles [JS19] (G metric).
If we assume active memory correction, we can use depth × width (DW metric).
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AES key search using Grover’s algorithm
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Unstructured search

(N. M)-unstructured search problem
Given a randomly sorted list L of size N and a property f (·) such that exactly M elements
of L satisfy f (·), find one such element.

=⇒ Classically this requires O(N/M) steps, Grover’s solves it in O(
√

N/M) steps.

Figure: Grover search circuit when M = 1.
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AES block cipher
Block cipher with encryption function E : {0, 1}k × {0, 1}n → {0, 1}n.
E (·, m) considered indistinguishable from a random function over {0, 1}k 7→ {0, 1}n.

Attacking AES: given (m, c), find k such that c ← E (k, m).

Since E (·, m) ∼ $, this is an unstructured search in {0, 1}k .
=⇒ Classical runtime ≈ 2k encryptions, one per key
=⇒ Quantum runtime ≈ 2k/2 Grover steps
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Asymptotically, we are “done” with cryptanalysis: 2k vs 2k/2 means doubling the key
length k is enough.

Why attempt a non-asymptotic cryptanalysis?

General reason: doubling keys may be practically inconvenient (and overkill).

Particular reason: the hardness of AES is being used as a definition of security.

NIST Post-Quantum Cryptography standardisation
Since 2017, the US NIST has been running a process to standardise post-quantum
public-key cryptographic schemes.

To qualify for ”category 5” security, a scheme should be as secure as AES-256.
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Where should we start with non-asymptotyc cryptanalysis?

First, an asymptotically smaller issue: we have been ignoring the cost of Uf .
Our implementations suggest ≈ 220 gates [JNRV20]

Follow up work reduces this somewhat [ZWS+20, JBK+22, HS22] (≈ 2 bits smaller)

Second, a bigger issue: the quantum computation model is too generous to the
attacker.

Let’s talk quantum state decoherence
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Quantum state decoherence

Classical memory is easy to error-correct, quantum memory not at all

Current qubits need near-absolute-zero temperatures; yet, operating on them
quickly leads to signal loss

New constraint: max-depth (MD)
Consider limiting the depth of quantum circuit [Nat16]:

MD = 240 ≈ “gates that presently envisioned quantum computing architectures
are expected to serially perform in a year”

MD = 264 ≈ “gates that current classical computing architectures can perform
serially in a decade”

MD = 296 ≈ “gates that atomic scale qubits with speed of light propagation times
could perform in a millennium”
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Consequences of MD

NIST considers a hard limit MD ∈ {240, 264, 296}.

AES-256: MD < 2k/2 = 2128, what is naively required by Grover’s

Grover search almost certainly fails if stopped early; can’t rinse-and-repeat
=⇒ We need to account for Grover’s parallelisation.

Issue
Grover parallelises badly [Zal99]. Rule of thumb: need S machines for

√
S speed-up.
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Example: Parallel Grover
Let L be a list to search and U a “Grover step”

Divide L = L1 ∪ L2 with #L1 = #L2 = #L/2,
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Example: Parallel Grover

In general, using S machines,

The circuit width 7→ S ·W (U)

The circuit depth 7→
√

#L · D(U)/
√

S

The circuit gate count 7→
√

#L · G(U) ·
√

S

This leads to gate counts. For a fully analysis in our setting, see [JNRV20].
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Resulting estimates

Cipher Gate-count for MD
∞, query ∞, gates 240 264 296

AES-128 264 283 2117 293 ∗283

AES-192 296 2114 2181 2157 2126

AES-256 2128 2148 2245 2221 2190

=⇒ Quantum speed-ups with depth limit not as dramatic for symmetric crypto.

Slightly smaller numbers have since been obtained in the same computational model.
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An interlude: Quantum lattice sieving
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Lattice sieving using Grover’s algorithm

Lattice point sieving is the currently fastest Short Vector Problem solver available
at experimental size

To find short vectors in a lattice Λ, sieving
samples a list L of exponentially many vectors vi ∈ Λ

performs nearest neighbour search (NNS) on L to create a list L′ of shorter vectors

repeats NNS multiple times, if L is long enough, a short vector is found

NNS internally performes unstructured search! =⇒ “Groverise” (really, “filtered
quantum search”)
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Many lattice sieves exist [AKS01, NV08, Laa15, ADH+19]

At the time of publication of [AGPS20], the asymptotically faster quantum sieve
was from [BDGL16]

Classical complexity 20.292n+o(1), quantum complexity 20.265n+o(1)

Theoretically, using the quantum sped-up version should save ≈ 2(0.292−0.265)n

effort

Forget max-depth. [AGPS20] ask: how does error correction overhead impact the
quantum advantage?
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Albrecht, Gheorghiu, Postlethwaite and Schanck consider using four cost metrics:

count gates: assumes idle qubits don’t require error correction

count depth-width: assumes idle qubits require error correction, costing Θ(1) ops.

count DW in the surface code: idle qubit error correction costs Ω(log2(DW )) ops.

surface code beyond asymptotics (Gidney-Eker̊a, [GE21]): under mild engineering
assumptions, choose attack parameters minimising estimated concrete overhead

They adapt the code of [GE21] to their quantum NNS circuits, and compare with
asymptotic gate cost.
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What’s the impact of error correction?

Quantum metric n log timec log depthQ advantage factor

Asymptotic # of gates 312 91 83 28

Gidney-Eker̊a 312 119 119 20

Asymptotic # of gates 352 103 93 210

Gidney-Eker̊a 352 130 128 22

Asymptotic # of gates 544 159 144 215

Gidney-Eker̊a 544 189 182 27

Asymptotic # of gates 824 241 218 223

Gidney-Eker̊a 824 270 256 214
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Observation
Error-correction considerations practically reduce the advantage by about 28 throughout
all cryptanalytically interesting dimensions.
=⇒ The larger the dimension, the more appealing is quantum sieving.

This is opposite to the effect of applying max-depth constraints. For fixed MD, the
larger the key space, the smaller the advantage of running Grover search.

Open follow-up: Would combining both kill advantages at both ends?
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New result: Quantum lattice enumeration
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Lattice enumeration

The other main Short Vector Problem solver

In dimension n, poly(n) memory, 2 1
8 n log n+o(n) time

Given a lattice basis (b1, . . . , bn), it proceeds by identifying all short-enough
vectors in ⟨bn⟩, then ⟨bn−1, bn⟩, . . . via depth-first search

It terminates when a returning a short vector in ⟨b1, . . . , bn⟩

It is naturally interpreted as searching for a “marked leaf” in a tree, where
“marked” = “short”
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Nodes divided on
levels

“Middle” levels
super-exponentially
large [GNR10]:

#T ≈ #Zn/2
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Quantum tree search

In 2018, Montanaro introduces two quantum tree-search algorithm, DetectMV
and FindMV [Mon18]

Given a tree T and a predicate P, DetectMV returns whether ∃x ∈ T such that
P(x) = ⊤

By performing “depth-first decision”, DetectMV 7→ FindMV , which returns x

Classical worst-case runtime O(#T ) 7→ quantum worst case O(
√

#T · n), n the
height of T
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DetectMV consists of repeating multiple quantum phase estimations of an
operator W

Under conservative assumptions, we evaluate
√

#T · n times W

Does quantum enumeration fit within max-depth?
For the sake of thought experiment, let’s choose Depth(W ) = Gates(W ) = 1

Using lower bounds for the cost of enumeration [ANSS18], we pick a block size β
for using BKZ against Kyber
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E
random
tree T

[Depth(FindMV )] ≈ E[
√

#T · β] ≈
√
E[#T ] · β ≈


290.3 for Kyber-512,
2166.2 for Kyber-768,

2263.7 for Kyber-1024,

Wait, don’t drag me down the podium

I do know Jensen’s inequality!
E[
√

#T ] ≤
√
E[#T ]

Just wait a handful of slides
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We plausibly don’t fit within
MD = 296

We need find ourselves smaller trees

Classic trick from parallel enumeration
Precompute nodes up to level k > 1, run
FindMV on the subtrees
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Would this work?

k ≈ 1: in this case most of the tree fits within the quantum enumeration
subroutine → a quadratic speedup without pre-computation, but maybe not our
case

k ≈ n/2: we run ≈ Hn/2 quantum enumeration calls
=⇒ total gate-count ≈ Hn/2 ≈ cost of classical enumeration

k ≈ n: we run some quantum enumeration, we precomputed more than Hn/2
classically, no advantage over classical enumeration
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Running FindMV for every element in Hk may be too much: try bundling!

Assume 2y qRAM available

Precompute sets of 2y elements in Hk , collect them under a ‘virtual’ node v , run
FindMV over the tree T (v) with root v

Disclaimer
qRAM (a.k.a. QRACM) may be ex-
tremely costly to access [JR23]. Many
(most?) quantum-classical speedups
assume it.
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One last step

Remember E[
√

#T ] ≤
√
E[#T ]?

We want to argue this quantum enumeration won’t work, we need lower bounds,
not upper bounds!

Definition: Multiplicative Jensen’s gap
Let X be a random variable. We say X has multiplicative Jensen’s gap 2z if√

E[X ] = 2z E[
√

X ].

Let’s find some lower bounds! . . . as a function of z
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Classical pre-computation cost – well understood

E
random
tree T

[Classical Gates] ≈ 1
2

k∑
i=1

Hi ≈ max
1≤ℓ≤k

Hℓ

Quantum gate-cost

E
random
tree T

[Quantum Gates] ≈ Hk
2y · E [Gates(FindMV(T (g)))]

≥ Hk
2y · E

[√
#T (v) · (n − k + 1)

]
· Gates(W )

= Hk
2y ·

1
2z

√
E [#T (v) · (n − k + 1)] · Gates(W )

Quantum depth

E [Depth(QPE(W ))] ≥ 1
2z

√
E [#T (v) · (n − k + 1)] · Depth(W ).
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We can now try computing some numbers.

We assume both Depth(W ) = Gates(W ) = 1 (“query-model”) and a lower bound
based on best-known quantum arithmetic circuits (“circuit-model”, recent work
may help [BvHJ+23])

We use the LWE-estimator to find the enumeration dimension β

We estimate sub-tree sizes using cylinder pruning lower-bounds [ANSS18]

We estimate costs for every k ≤ n, y ≤ 80, z ≤ 64

We report z , k minimising classical + quantum gate-cost
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Reasons to hope
The cost reduces smoothly as a
funciton of z (approximate
estimates may already help)

Experimental evidence up
β = 70 say z ≈ 1

Can prove lower bounds:
z ≤ 1
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There’s only some results for random real lattices [AEN]

We only covered cylinder pruning. Discrete pruning? Ad-hoc pruning for quantum
enumeration?
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Conservative estimates are good in general

But mild limitations to quantum computers may incur in large penalties

It is quite difficult to tell if many proposed quantum speedups to classical
algorithms actually hold

Can we do better by designing quantum attacks optimised for these limitations?
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