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Aim: assess the concrete threat posed by a specific quantum algorithm on newly
standardised cryptography.

This work was published at Crypto 2024 as [BBTV24].

Morally a follow up to MSR internship work [JNRV20].

Our results are partial: many known unknowns captured as conjectures, and
backed by small-scale experiments.



PQC Quantum hardness of lattices Quantum enumeration Classical-quantum enumeration Cost estimates Conclusion

In 1994 Peter Shor develops an period-finding quantum algorithm in polynomial
time [Sho97].

This algorithm’s results in quantum polynomial time attacks on RSA and discrete
logarithm.

Recently, significant investments from industry into developing quantum
computing technology [MQT18, MN18, AAB+19, Gib19, WFG21].

Increased urgency to develop alternative public-key cryptography primitives
conjectured to resit quantum-computing attacks (“post-quantum” cryptography).
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How we think quantum algorithms

Width 3, depth 5 and gate count 5.

The wires are qubits, the nodes are gate evaluations.

The cost can be expressed in terms of different metrics, e.g. by counting wires,
components, depth, area. . .
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[JS19] suggests that one can compare the # of quantum gates with CPU cycles.

classical CPU

⇒ We consider number of gates as an estimate for the cost of a circuit.

0Image courtesy of Sam Jaques.
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In 2016, NIST publishes a call for proposals for post-quantum signature schemes
and key encapsulation mechanisms [Nat16].

They propose a model for thinking about concrete post-quantum security:
A candidate scheme should be as hard to break “as the AES block cipher”.

Quantum computers that can perform a limited number max-depth (MD) of serial
gate evaluations: qubits are hard to error-correct.

Proposed values for max-depth (MD):
MD = 240 ≈ “gates that presently envisioned quantum computing architectures
are expected to serially perform in a year”.

MD = 264 ≈ “gates that current classical computing architectures can perform
serially in a decade”.

MD = 296 ≈ “gates that atomic scale qubits with speed of light propagation times
could perform in a millennium”.
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The max-depth constraint can significantly impact quantum attack perfromance.
Attackers may be limited in the size of the instances they can solve before
decoherence.

Multiple quantum circuits may have to be run in parallel to solve larger instances.

Example: Quantum exaustive key-search on AES
AES-256: naively, Grover’s requires depth/gates ≈

√
2|key| = 2128 > MD.

Grover search almost certainly fails if stopped early:
=⇒ We need to account for Grover’s parallelisation.

Grover search parallelises badly [Zal99], causing the concrete quantum advantage
to strongly reduce [JNRV20]: AES-256 (MD = 296) ⇒ 2192 gates )
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In 2023 NIST posts the first draft standards for comments.

Four candidates are selected to become new standards.

3/4 depend on computational hardness conjectures about algebraic lattices.

Natural questions
What are the best quantum attacks on lattice problems?

What is their cost against the standards?
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Case-study: Kyber (ML-KEM).
Depends on the hardness of distinguishing a specific distribution of integer
matrices “modulo q” from uniformly random.

Classically, the two best attack approaches require performing “lattice reduction”.
Given an public key, build a matrix B ∈ Zm×m

q . Want to find a “short” non-zero
vector in the integer span of the columns of B (the “lattice with basis B”).

To do so, call a “block reduction” algorithm on B (e.g. BKZ [SE91], Slide
reduction [GN08], Progressive BKZ [AWHT16], Self-Dual BKZ [MW16]...).

Block reduction constructs a polynomially long sequence of related, smaller-rank
matrices (Bi ∈ Zm×n

q )i , and looks for a short-enough non-zero vector in the integer
span of each Bi .

Finding a short vector in such lattices is considered hard, and is an instance of the
“short vector problem” (SVP). An SVP solver is used for each Bi .
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Block reduction is a classical algorithm, its cost is dominated by that of solving
SVP.

The best quantum attacks of Kyber involve applying quantum speed-ups to SVP
solvers.

There are many approaches for building an SVP solver.

At least two of these, sieving and enumeration, can be “compiled” into quantum
algorithms using black-box methods [LMv13, KMPM19, ANS18, BCSS23].

The resulting asymptotic quantum speedups are understood, but there’s not a lot
of work on their concrete cost [AGPS20] (and now [BBTV24]).
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Our work: new conjectured lower bounds on the concrete cost of quantum enumeration
with extreme cylinder pruning (incl. a new quantum enumeration algorithm).

Quantum enumeration algorithms were first demonstrated by Aono et
al. [ANS18]; asymptotically, they provide a ≈ quadratic speedup.

Our work looks at the “max-depth” setting [Nat16, Pre18].

Our results suggest that quantum speedups in this setting may not apply (just as
for Grover [JNRV20]).
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Lattice enumeration

Say we are looking for a short vector v ̸= 0 in a
lattice L with basis (b1, . . . , bn−1, bn).

Suppose we know an upper bound R on ∥v∥.

In enumeration, we explore all (or most) vectors in L
of norm ≤ R, optionally stopping when we find one.

Conceptually, enumeration consists of depth-first
search on a tree T containing short vectors as leaves.

As used in lattice reduction, in dimension n, this
requires poly(n) memory, and E[#T ] = 2 1

8 n log n+o(n)

time on average.
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A look at the enumeration tree T
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Nodes located on
different levels Zk .

“Middle” levels
super-exponentially
large [GNR10]:

#T ≈ #Zn/2

The tree size can
be somewhat
reduced by
“pruning” unlikely
paths early.
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Montanaro’s quantum tree search

In 2018, Montanaro introduces two quantum tree-search algorithms, DetectMV
and FindMV [Mon18].

Given a tree T and a predicate P, DetectMV returns whether ∃ leaf ∈ T such that
P(leaf) = true in Õ(

√
T · n) evaluations of P, where T = upper bound of #T .

By performing decision on every level, DetectMV 7→ FindMV , which returns such
a leaf.

For trees with O(1) marked leaf and #T ≈ T :

Classical avg. case runtime O(#T ) 7→ quantum avg. case depth Õ(
√

#T · n).



PQC Quantum hardness of lattices Quantum enumeration Classical-quantum enumeration Cost estimates Conclusion

Montanaro’s quantum tree search

DetectMV = repeating multiple Quantum Phase Estimations (QPE) of an
operator W that checks the predicate P; evaluating QPE(W ) is the quantum part.

QPE(W ) = serially evaluate Õ(
√

#T · n) times the operator W .

Our objective: estimate/lower-bound the expected gate-cost of FindMV(T ), while
keeping the depth of QPE(W ) within max-depht MD.
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A back of the envelop estimation/lower bound of the depth of QPE(W )

Lower-bound the size of W by assuming Depth(W ) = Gates(W ) = 1.

Using the LWE estimator we find the required block size β to break Kyber.
β is the depth n of tree.

From n we obtain #T by using lower bounds for the cost of enumeration with
cylinder pruning [ANSS18].

Finally, we check if the resulting circuit depth of QPE(W ) is ≤ MD.
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E
random
tree T

[Depth(QPE(W ))] ≈ E[
√

#T · β] ≈
√
E[#T ] · β ≈


290.3 for Kyber-512,
2166.2 for Kyber-768,

2263.7 for Kyber-1024.

Wait, don’t drag me out of the room.

I do know Jensen’s inequality!
E[

√
#T ] ≤

√
E[#T ].

We plausibly don’t fit within 296 depth.
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We need smaller trees to enumerate.

Classic trick from parallel enumeration
Precompute nodes up to level k > 1, run
FindMV on the subtrees.

We can estimate the size of subtrees using
similar techniques to those used for the full
tree.
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Up to what level k should we precompute?

k ≈ 1: QPE(W ) covering most of the tree
would have to fit within max-depth: likely
not our case.

k ≈ n/2: we run ≈
∣∣∣Zn/2

∣∣∣ quantum
enumeration calls: cost ≈ classical
enumeration.

k ≈ n: we precompute most of the classical
tree, no speedup.
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Quantum enumeration on level k ≪ n/2 is likely impossible.

On level k ≥ n/2 it is pointless.

Our best chance is k ⪅ n/2, somehow reducing the number of calls to be ≪
∣∣∣Zn/2

∣∣∣.
Bundle trees rooted in Zk into bunches

Precompute sets of 2y elements in Zk .

Collect them under a ‘virtual’ node v .

Run FindMV over the tree T (v) with
root v .

Disclaimer
Bundling requires 2y QRACM.

QRACM may be quite costly to
access [JR23].

Yet, many quantum-classical
speedups assume it.

Having identified a more general combined classical-quantum enumeration strategy, we
would like to estimate its cost.
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Want a formula for the average cost of the attack, in terms of quantum gates and
circuit depth.

If not possible, we’d settle for lower bounds and hope they are very high.

We now look at the depth of QPE(W ), the gate count follow similarly.

First conjecture
Let T (v) be a tree of height h. Since Depth(QPE(W )) ∈ Õ(

√
#T (v) · h), our first

conjectured lower bound is
Depth(QPE(W )) ≥

√
#T (v) · h.
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Given a specific attack target, the value of h will be determined by k as part of
the attack strategy.

Therefore E
random
tree T

[Depth(QPE(W ))] ≥ E
random
tree T

[√
#T (v)

]
·
√

h.

There is no theory about estimating E
[√

#T (v)
]

in the lattice literature (Aono
et al. [ANS18] already mention this issue).

Jensen’s gap only gives us an upper bound: E
[√

#T (v)
]

≤
√
E [#T (v)].

Definition: Multiplicative Jensen’s gap
Let X be a random variable. We say X has multiplicative Jensen’s gap 2z if√

E[X ] = 2z E[
√

X ].

Ideally, we’d like an upper bound to z . We will estimate “around it”.
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The Jensen’s gap gives us E [Depth(QPE(W ))] ≥ 2−z√
E [#T (v)] ·

√
h.

We now need E[#T (v)].

Standard lattice theory gives us this for the full enumeration tree T , and for
cylinder-pruned trees.

However, we are looking at sub-trees rooted on level k.

Second + third conjectures combined
Let T (g) be a sub-tree with root g ∈ Zk . Then

#T (g) ≈ E
[∑

i>0 |Zk+i |
|Zk |

]
⪆

∑
i>0

E[|Zk+i |]
E[|Zk |] .
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All combined, we arrive at our conjectures lower bounds for the E[cost] of the attack.

Quantum depth

E [Depth(QPE(W ))] ≥ 1
2z

√
E [#T (v)] · (n − k + 1) · Depth(W ), for g ∈ Zk .

Quantum gate-cost

E[Gates(FindMV)] ≥ E[|Zk |]
2y · 1

2z

√
E [#T (v)] · (n − k + 1) · Gates(W ), for g ∈ Zk .
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We can now try to compute some estimates.

We assume either Depth(W ) = Gates(W ) = 1 (in the “query-model”) or an
estimated lower bound based on best-known quantum arithmetic circuits (in the
“circuit-model”, similar to independent work [BvHJ+23]).

We decide how to lower bound #T (g) ⪆
∑

i>0
E[|Zk+i |]
E[|Zk |] : for the numerator should

we use our best known estimates, or absolute lower bounds [ANSS18]?

We use the LWE-estimator to find the enumeration dimension n = β.

We estimate costs for every k ≤ n, y ≤ 64, z ≤ 64.

We report smallest z such that our lower bound of classical + quantum gate-cost
≤ Grover search on AES.
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Figure: Smallest Jensen’s gap for which lower bound on attack cost ≤ Grover-on-AES’ cost.
Using [ANSS18]’s lower bounds for subtree sizes: it requires maximally improving current
cylinder pruning technique.
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Figure: Smallest Jensen’s gap for which lower bound on attack cost ≤ Grover-on-AES’ cost.
Using current understanding of cylinder pruning to estimate subtree sizes.
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Take aways

Likely we can exclude quantum enumeration on Kyber-768 and -1024.

In the “circuit-model” for W , attacks on Kyber-512 also looks unlikely.
And we are being quite strict in various parts of the computation.

There’s “good hope” that quantum enumeration does not pose a threat.

Clarification
Yet, we can’t fully exclude it without a clear understanding of the Jensen gap.

Can we say anything about this gap?
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Open problems: Jensen’s gap

The overall classical+quantum cost changes smoothly as a funciton of z
=⇒ rough estimates of z may already help.

Experimental evidence up to β = 70 says z ≈ 1.

Alternatively, we can prove lower bounds on E[
√

#T ]:

E[
√

#T ] ≥ max
{√

E[#T ] − 4
√
V[#T ], 2− 1

2 ln 2
4
√

V[#T ] ·
√
E[#T ]

}
.

But both depend on V[#T ], which is also not known.
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Open problems: other directions

We’ve only covered cylinder pruning. What about discrete pruning? Or ad-hoc
pruning for quantum enumeration?

Currently, searching for attack costs is an optimisation problem. Can we find a
closed formula? This would allow running it as part of “estimator” scripts.

There quite a few other places where our analysis is not be tight, meaning actual
costs are likely higher.
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Conclusions
Asymptotically quadratic quantum speedups on enumeration look unlikely against
lattice-based cryptography under max-depth constraints.

Technically hard to fully exclude the viability of quantum enumeration.

More needs to be learnt about the distribution of enumeration trees, to reduce
conjectures and learn the Jensen’s gap for enumeration tree sizes.

Thank you
Paper @ https://eprint.iacr.org/2023/1423

Slides @ https://fundamental.domains

https://eprint.iacr.org/2023/1423
https://fundamental.domains
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