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Lattice reduction cost models

>>> Lattice reduction algorithms are a fundamental tool
for cryptanalysis of lattice-based cryptographic
schemes

>>> A common strategy is to use them to solve the Unique
Shortest Vector Problem as part of ‘primal lattice
attacks’

>>> Costing such algorithms is therefore a fundamental
step for choosing secure parameters
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Lattice reduction cost models

>>> Lattice reduction algorithms are a fundamental tool
for cryptanalysis of lattice-based cryptographic
schemes

>>> A common strategy is to use them to solve the Unique
Shortest Vector Problem as part of ‘primal lattice
attacks’

>>> Costing such algorithms is therefore a fundamental
step for choosing secure parameters

>>> Heads-up: cost models disagree on the asymptotic
complexity
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>>> [GNO8] is the first systematic study of lattice
reduction strategies

>>> The work looks at using BKZ for solving Unique-SVP,

using a statistical approach for estimating its
effectiveness
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[GNO8] is the first systematic study of lattice
reduction strategies

The work looks at using BKZ for solving Unique-SVP,
using a statistical approach for estimating its
effectiveness

A necessary condition for successful recovery is
obtained

This approach is later applied to LWE embedding
lattices in [AFG14]
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>>> Let A be our lattice of dimension d with a unique
shortest vector v (up to *+ sign), and let )\; be the

ith minima
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>>> Let A be our lattice of dimension d with a unique
shortest vector v (up to *+ sign), and let )\; be the
ith minima

>>> Let § be the Hermite factor <= BKZ recovers
vectors long ~ §9Vol(A)Y/9

>>> If

A2(N)/A1(A) > 769, for 7 € (0,1) (1)

the shortest vector is recovered

>>> 7 is estimated experimentally
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Let A be our lattice of dimension d with a unique
shortest vector v (up to *+ sign), and let )\; be the
ith minima
Let § be the Hermite factor <= BKZ recovers
vectors long ~ §9Vol(A)Y/9
If

A2(N)/A1(A) > 769, for 7 € (0,1) (1)
the shortest vector is recovered
7 is estimated experimentally

(1) = optimal number of LWE samples mpgos and BKZ
block size [gpg to run the primal attack

We refer to this work as the 2008 model
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>>> [ADPS16] introduces a new success condition for
solving Unique-SVP with BKZ when ||v|| is known

>>> The strategy is based on the Geometric Series
Assumption, and on the structure of the BKZ

algorithm

>>> We refer to this work as the 2016 model
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>>> [ADPS16] introduces a new success condition for
solving Unique-SVP with BKZ when ||v|| is known

>>> The strategy is based on the Geometric Series
Assumption, and on the structure of the BKZ
algorithm

>>> We refer to this work as the 2016 model

>>> To explain the condition we will first review how
BKZ works
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>>> Let {bj;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v L {bj*

log, (lengths)

i—1
J=1

=== ||b7|

basis index i

7/18




Lattice reduction Experiments Results New estimates Conclusions
000000 (o) 00000 00 00

>>> Let {b;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v L {bj* J’;}

T I I I
=== GSA([[b7[) ||

= ||b7|

log, (lengths)

basis index i
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>>> Let {bj;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v i_{bf
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>>> Let {b;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v L {bj* J’;}

T = asa([b; ) ||
~ =]

log, (lengths)

basis index i
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>>> Let {bj;}; be A’s basis, {b}}; their Gram-Schmidt

vectors, and v; the projection of v L {bj* J’;}

I I I | I
—\ — GsA(bi) |
! — il ||

\

—

log, (lengths)

basis index i
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>>> Let {b;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v L {bj* J’;}

T I I I
| == Gsa([[b7[) ||

== ||b7|

log, (lengths)

basis index i
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>>> Let {b;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v L {bj* J’;}
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=== GSA(||b7[|) |

= ||b7|
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>>> Let {bj;}; be A’s basis, {b}}; their Gram-Schmidt

vectors, and v; the projection of v L {bj* J’;}

T I 1 I
=== GSA(||b7[|) |

= |7

log, (lengths)

~
N\
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>>> Let {bj;}; be A’s basis, {b}}; their Gram-Schmidt

vectors, and v; the projection of v L {bj* J’;}

=== GSA([|b7[]) |

= ||b7|

log, (lengths)

basis index i
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>>> Let {b;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v L {bj* J’;}
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>>> Let {b;}; be A’s basis, {b}}; their Gram-Schmidt
vectors, and v; the projection of v L {bj* J’;}

T I I I
. === GSA([[b7[) ||
=== E[||v; ]

log, (lengths)

basis index i
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>>> Let {bj}; be A’s basis, {b}}; their Gram- Schmidt
vectors, and v; the projection of v L {b* = 1

=== GSA(||b )
== R[] v7]|]

log, (lengths)

sis index i
>>> Choose (3 such that ||vd pr1ll < GSA([Ibg_p41l)

>>> Instantly solves Decision-LWE
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>>> Choose /3 such that Hvd pr1ll < GSA([Ibg_p41l)

>>> Instantly solves Decision-LWE
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>>> Let {bj}; be A’s basis, {b}}; their Gram- Schmidt
vectors, and v; the projection of v L {b* = 1

. === GSA(||bj|})

T~ — E[|lv?]]

log, (lengths)
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sis index i
>>> Choose [ such that ||vd pr1ll < GSA([Ibg_p41l)

>>> Instantly solves Decision-LWE
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>>> Let {bj}; be A’s basis, {b}}; their Gram- Schmidt
vectors, and v; the projection of v<i_{b*J 1

=== GSA(||bj|})

M —

log, (lengths)

i=d-38+1|i=d-28+1|i=d-p+1

sis index |
>>> Choose /3 such that Hvd pr1ll < GSA([Ibg_p41l)

>>> Instantly solves Decision-LWE
>>> Should solve Search-LWE with at most [d/f] — 1 more
SVP oracle calls
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>>> The two models disagree on the primal attack’s
asymptotic complexity
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>>> The two models disagree on the primal attack’s
asymptotic complexity
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>>> We decided to experimentally investigate the
accuracy of the 2016 model’s predictions
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Our experiments

>>> Given (n, g, o), the 2008 model provides parameters
(ma00s, B2008) for 10% recovery probability [AFG14]

>>> We pick (m2015, ,82015) according to [ADPS16], run BKZ2
and measure the recovery rate
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>>> Given (n, g, o), the 2008 model provides parameters
(ma00s, B2008) for 10% recovery probability [AFG14]

>>> We pick (m2015, ,32015) according to [ADPS16], run BKZ2
and measure the recovery rate

>>> We instrument BKZ to take detailed statistics about
the vi length and moment of recovery

>>> To simplify analysis we make some changes to
subroutine calls to LLL
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Our experiments

>>> Given (n, g, o), the 2008 model provides parameters
(ma00s, B2008) for 10% recovery probability [AFG14]

>>> We pick (m2015, ,32015) according to [ADPS16], run BKZ2
and measure the recovery rate

>>> We instrument BKZ to take detailed statistics about
the vi length and moment of recovery

>>> To simplify analysis we make some changes to
subroutine calls to LLL

>>> All our experiments were run using the FpyLLL
lattice reduction library < [FPL17, FPY17]
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Results
LWE parameters [ADPS16] Experiments
n q o Boote  Moo1e B Tk
65 521 3.2 56 182 56 10000 93.3%
51 52.8%
46 4.8%
80 1031 3.2 60 204 60 1000 94.2%
55 60.6%
50 8.9%
45 0.2%
100 2053 3.2 67 243 67 500 88.8%
62 39.6%
57 5.8%
52 0.2%
108 2053 3.2 77 261 77 5 100.0%

110 2053 3.2 78 272 78 5 100.0

oe
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>>> Experiments agree with the 2016 model, but we
noticed two unexpected behaviours
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>>> Experiments agree with the 2016 model, but we
noticed two unexpected behaviours

>>> First, while expecting BKZ to recover vg_ﬁ+1,
for small experiments we observed

T T T
b — Ci - 13 4‘ 1
> 01f| " =65 .
0 q =~ 215
§ o =32
a

0 | ! |

50 100 150

basis index i
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=== GSA([b|)
=== E]|v;|]

i=d—-B+1—7v
|

basis index i
>>> vi is first recovered at the rightmost intersection
at i=d—v
>>> In the next tour this projection is extended at
i=d—-p+1-7y
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=== GSA(|[bj|})
== B[ 7]

i=d—-B+1—7v
|

basis index i
>>> vi is first recovered at the rightmost intersection

at i=d—v
>>> In the next tour this projection is extended at
i=d—pB4+1—7v

>>> The double intersection is not common for
cryptographically chosen parameters, and can be
easily avoided
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>>> Second, 99.7%+ of the time v is recovered
immediately after the SVP oracle finds its
projection
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>>> Second, 99.7%+ of the time v is recovered
immediately after the SVP oracle finds its
projection

>>> We model the state of the bases after first finding

*
Vd—B+1
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>>> Lemma For [ > 40, Size Reduction recovers v from

VZ—B+1 with overwhelming probability O]
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New security estimates

>>> We added the 2016 model to the LWE estimator from
[APS15], and used it to recost the primal attack
against proposed schemes (as of May 2017)
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New security estimates

>>> We added the 2016 model to the LWE estimator from
[APS15], and used it to recost the primal attack
against proposed schemes (as of May 2017)

>>> For each scheme we used their proposed cost strategy
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Scheme Bstifete3® °f  Our estimate

Lizard [CKLSl6a, CKLSl6b] 129.7--131.6 85.9--88.7
TESLA [BG14, ABBD15] 71.0--142.0 61.5--122.4
SEAL v2.1 [CLP17] 97.6--130.5 99.6--129.5

>>> Security estimates for Lizard (PKE), TESLA
(Signatures) and SEAL 2.1 (FHE) under the 2016
model, as of May 2017; more in the paper

>>> Some schemes were parametrised against the dual
attack from [Albl7], which is still (often) cheaper
against sparse and small secrets. Nontheless, in
those cases the gap between primal and dual attack
narrows
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Conclusions

>>> We confirmed the validity of the 2016 model [ADPS16]
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Conclusions

>>> We confirmed the validity of the 2016 model [ADPS16]

>>> Some existing lattice based schemes may need
reparametrisation to resist cryptanalysis via
lattice reduction
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Conclusions

>>> We confirmed the validity of the 2016 model [ADPS16]

>>> Some existing lattice based schemes may need
reparametrisation to resist cryptanalysis via
lattice reduction

>>> The double intersection observation and the
difference in success probability between models
tell a cautionary tale about extrapolating
asymptotics from small dimensional experiments
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Thank you

>>> Paper @ https://ia.cr/2017/815

>>> Experiments (code && data) @
https://github.com/fvirdia/agvwl7-code-data

>>> Estimator [APS15] @
https://bitbucket.org/malb/lwe-estimator
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