Revisiting the Expected Cost of Solving uSVP and Applications to LWE

Martin R. Albrecht¹ Florian Göpfert^{2,3} <u>Fernando Virdia</u>¹ Thomas Wunderer³

¹Information Security Group, Royal Holloway, University of London, ²rockenstein AG, ³TU Darmstadt

> 4 December 2017 Asiacrypt 2017

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	00	00

Overview

Lattice reduction cost models

Our experiments

Experimental and theoretical results

New security estimates

Conclusions

Lattice reduction	Experiments	Results	New estimates	Conclusions
••••••		00000	00	00

Lattice reduction cost models

- >>> Lattice reduction algorithms are a fundamental tool
 for cryptanalysis of lattice-based cryptographic
 schemes
- >>> A common strategy is to use them to solve the Unique Shortest Vector Problem as part of `primal lattice attacks'
- >>> Costing such algorithms is therefore a fundamental
 step for choosing secure parameters

>>> Heads-up: cost models disagree on the asymptotic
 complexity

Lattice reduction	Experiments	Results	New estimates	Conclusions
•00000	O	00000	OO	OO

Lattice reduction cost models

- >>> Lattice reduction algorithms are a fundamental tool
 for cryptanalysis of lattice-based cryptographic
 schemes
- >>> A common strategy is to use them to solve the Unique Shortest Vector Problem as part of `primal lattice attacks'
- >>> Costing such algorithms is therefore a fundamental
 step for choosing secure parameters
- >>> Heads-up: cost models disagree on the asymptotic
 complexity

Lattice reduction	Experiments	Results	New estimates	Conclusions
00000	0	00000	00	00

- >>> [GN08] is the first systematic study of lattice
 reduction strategies
- >>> The work looks at using BKZ for solving Unique-SVP, using a statistical approach for estimating its effectiveness
- >>> A necessary condition for successful recovery is obtained
- >>> This approach is later applied to LWE embedding
 lattices in [AFG14]

Lattice reduction	Experiments	Results	New estimates	Conclusions
00000	0	00000	00	00

- >>> [GN08] is the first systematic study of lattice
 reduction strategies
- >>> The work looks at using BKZ for solving Unique-SVP, using a statistical approach for estimating its effectiveness
- >>> A necessary condition for successful recovery is
 obtained
- >>> This approach is later applied to LWE embedding
 lattices in [AFG14]

Lattice reduction 000000	Experiments O	Results 00000	New estimates 00	Conclusions OO

- >>> Let Λ be our lattice of dimension d with a unique shortest vector \mathbf{v} (up to \pm sign), and let λ_i be the i^{th} minima
- >>> Let δ be the Hermite factor \iff BKZ recovers vectors long $\approx \delta^d \operatorname{Vol}(\Lambda)^{1/d}$

$$\lambda_2(\Lambda)/\lambda_1(\Lambda) > \tau \delta^d, \quad ext{for } \tau \in (0,1)$$
 (1)

the shortest vector is recovered

- >>> τ is estimated experimentally
- >>> (1) \Rightarrow optimal number of LWE samples $m_{\rm 2008}$ and BKZ block size $\beta_{\rm 2008}$ to run the primal attack

>>> We refer to this work as the 2008 model

Lattice reduction 000000	Experiments	Results	New estimates	Conclusions
	O	00000	OO	OO

- >>> Let Λ be our lattice of dimension d with a unique shortest vector \mathbf{v} (up to \pm sign), and let λ_i be the i^{th} minima
- >>> Let δ be the Hermite factor \iff BKZ recovers vectors long $\approx \delta^d \operatorname{Vol}(\Lambda)^{1/d}$

 $\lambda_2(\Lambda)/\lambda_1(\Lambda) > \tau \delta^d, \quad \text{for } \tau \in (0,1)$ (1)

the shortest vector is recovered

- >>> τ is estimated experimentally
- >>> (1) \Rightarrow optimal number of LWE samples $m_{\rm 2008}$ and BKZ block size $\beta_{\rm 2008}$ to run the primal attack

>>> We refer to this work as the 2008 model

Lattice reduction 000000	Experiments	Results	New estimates	Conclusions
	O	00000	OO	OO

- >>> Let Λ be our lattice of dimension d with a unique shortest vector \mathbf{v} (up to \pm sign), and let λ_i be the i^{th} minima
- >>> Let δ be the Hermite factor \iff BKZ recovers vectors long $\approx \delta^d \operatorname{Vol}(\Lambda)^{1/d}$

$$\lambda_2(\Lambda)/\lambda_1(\Lambda) > au \delta^d, \quad ext{for } au \in (0,1)$$
 (1)

the shortest vector is recovered

>>> τ is estimated experimentally

>>> (1) \Rightarrow optimal number of LWE samples m_{2008} and BKZ block size β_{2008} to run the primal attack >>> We refer to this work as the 2008 model

Lattice reduction	Experiments	Results	New estimates	Conclusions
00●000	O	00000	00	OO

- >>> Let Λ be our lattice of dimension d with a unique shortest vector \mathbf{v} (up to \pm sign), and let λ_i be the i^{th} minima
- >>> Let δ be the Hermite factor \iff BKZ recovers vectors long $\approx \delta^d \operatorname{Vol}(\Lambda)^{1/d}$

$$\lambda_2(\Lambda)/\lambda_1(\Lambda) > au \delta^d, \quad ext{for } au \in (0,1)$$
 (1)

the shortest vector is recovered

- >>> τ is estimated experimentally
- >>> (1) \Rightarrow optimal number of LWE samples m_{2008} and BKZ block size β_{2008} to run the primal attack
- >>> We refer to this work as the 2008 model

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	00	00

- >>> [ADPS16] introduces a new success condition for solving Unique-SVP with BKZ when ||v|| is known
- >>> The strategy is based on the Geometric Series
 Assumption, and on the structure of the BKZ
 algorithm
- >>> We refer to this work as the 2016 model
- >>> To explain the condition we will first review how BKZ works

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	00	00

- >>> [ADPS16] introduces a new success condition for solving Unique-SVP with BKZ when ||v|| is known
- >>> The strategy is based on the Geometric Series
 Assumption, and on the structure of the BKZ
 algorithm
- >>> We refer to this work as the 2016 model
- >>> To explain the condition we will first review how BKZ works

basis index i>>> Choose β such that $\|\mathbf{v}_{d-\beta+1}^*\| < GSA(\|b_{d-\beta+1}^*\|)$ >>> Instantly solves Decision-LWE

basis index i>>> Choose β such that $\|\mathbf{v}_{d-\beta+1}^*\| < GSA(\|b_{d-\beta+1}^*\|)$ >>> Instantly solves Decision-LWE

basis index i>>> Choose β such that $\|\mathbf{v}_{d-\beta+1}^*\| < GSA(\|b_{d-\beta+1}^*\|)$ >>> Instantly solves Decision-LWE

- $\texttt{basis index } i \\ \texttt{basis index } i \\ \|\mathbf{v}^*_{d-\beta+1}\| < \textit{GSA}(\|b^*_{d-\beta+1}\|) \\ \texttt{basis index } i \\ \|\mathbf{v}^*_{d-\beta+1}\| \leq \textit{GSA}(\|b^*_{d-\beta+1}\|) \\ \texttt{basis index } i \\ \texttt{basis index } i$
- >>> Instantly solves Decision-LWE
- >>> Should solve Search-LWE with at most $\lceil d/\beta\rceil-1$ more SVP oracle calls

Lattice reduction	Experiments	Results	New estimates	Conclusions
	O	00000	OO	OO

>>> The two models disagree on the primal attack's
 asymptotic complexity

>>> We decided to experimentally investigate the accuracy of the 2016 model's predictions

Lattice reduction	Experiments	Results	New estimates	Conclusions
	O	00000	OO	OO

>>> The two models disagree on the primal attack's
 asymptotic complexity

>>> We decided to experimentally investigate the accuracy of the 2016 model's predictions

La	attice reduction	Experiments	Results	New estimates	Conclusions
	00000	•	00000	OO	OO
C)ur experimen	nts			
	>>> Given (<i>n</i> ,	(q, σ) , the 2	2008 model p	provides parame	ters
	(<i>m</i> ₂₀₀₈ , <i>β</i> ₂	(q, σ) for 10%	recovery p	robability [AFG	14]

- >>> We pick (m_{2016}, β_{2016}) according to [ADPS16], run BKZ2 and measure the recovery rate
- >>> We instrument BKZ to take detailed statistics about the \mathbf{v}_i^* length and moment of recovery
- >>> To simplify analysis we make some changes to subroutine calls to LLL

>>> All our experiments were run using the FpyLLL
lattice reduction library [FPL17, FPY17]

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	•	00000	OO	OO
Our experime	ents			
>>> Given (n	(q, q, σ) , the $S_{2008})$ for 10%	2008 model pr	covides paramet	ters
(m ₂₀₀₈ , ß		recovery pro	obability [AFG	14]

- >>> We pick (m_{2016}, β_{2016}) according to [ADPS16], run BKZ2 and measure the recovery rate
- >>> We instrument BKZ to take detailed statistics about the v^{*}_i length and moment of recovery
- >>> To simplify analysis we make some changes to subroutine calls to LLL

>>> All our experiments were run using the FpyLLL lattice reduction library [FPL17, FPY17]

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000		00000	OO	OO
Our experim	ents			
>>> Given (n,q,σ), the $eta_{ extsf{2008}})$ for 10%	2008 model p	provides paramet	ters
(<i>m</i> ₂₀₀₈ ,		recovery pi	robability [AFG	14]

- >>> We pick (m_{2016}, β_{2016}) according to [ADPS16], run BKZ2 and measure the recovery rate
- >>> We instrument BKZ to take detailed statistics about the v^{*}_i length and moment of recovery
- >>> To simplify analysis we make some changes to subroutine calls to LLL
- >>> All our experiments were run using the FpyLLL lattice reduction library 😌 [FPL17, FPY17]

Lattice 000000	reductior >	1	Experiments O		Results •0000	Nev OC	v estimates	Con OO	clusions
Res	ults								_
	LWE	parame	ters	[AD	PS16]		Experime	nts	
	п	q	σ	β_{2016}	m_{2016}	β	- #	recovery rate	
	65	521	3.2	56	182	56	10000	93.3%	-
						51		52.8%	
						46		4.8%	
	80	1031	3.2	60	204	60	1000	94.2%	-
						55		60.6%	
						50		8.9%	
						45		0.2%	
	100	2053	3.2	67	243	67	500	88.8%	-
						62		39.6%	
						57		5.8%	
						52		0.2%	

100.0%

100.0%

3.2

3.2

000000 0	0000	00	00

>>> Experiments agree with the 2016 model, but we noticed two unexpected behaviours

>>> First, while expecting BKZ to recover $\mathbf{v}_{d-\beta+1}^{*}$, for small experiments we observed

Lattice reduction 000000	Experiments O	Results 00000	New estimates 00	Conclusions OO
				í.

- >>> Experiments agree with the 2016 model, but we
 noticed two unexpected behaviours
- >>> First, while expecting BKZ to recover $\mathbf{v}^*_{d-\beta+1}$, for small experiments we observed

- >>> \mathbf{v}_i^* is first recovered at the rightmost intersection at $i=d-\gamma$
- >>> In the next tour this projection is extended at $i = d \beta + 1 \gamma$

>>> The double intersection is not common for cryptographically chosen parameters, and can be easily avoided

- >>> \mathbf{v}_i^* is first recovered at the rightmost intersection at $i=d-\gamma$
- >>> In the next tour this projection is extended at $i = d \beta + 1 \gamma$
- >>> The double intersection is not common for cryptographically chosen parameters, and can be easily avoided

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	00	00

- >>> Second, 99.7%+ of the time v is recovered
 immediately after the SVP oracle finds its
 projection
- >>> We model the state of the bases after first finding $\mathbf{v}^*_{d-\beta+1}$

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	00	00

- >>> Second, 99.7%+ of the time v is recovered
 immediately after the SVP oracle finds its
 projection
- >>> We model the state of the bases after first finding $\mathbf{v}^*_{d-\beta+1}$

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	O	0000●	OO	00

>>> Lemma For $\beta>$ 40, Size Reduction recovers ${\bf v}$ from ${\bf v}^*_{d-\beta+1}$ with overwhelming probability

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	•0	00

New security estimates

>>> We added the 2016 model to the LWE estimator from
[APS15], and used it to recost the primal attack
against proposed schemes (as of May 2017)

>>> For each scheme we used their proposed cost strategy

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	•0	00

New security estimates

- >>> We added the 2016 model to the LWE estimator from [APS15], and used it to recost the primal attack against proposed schemes (as of May 2017)
- >>> For each scheme we used their proposed cost strategy

Lattice re 000000	duction Experiments O	Results New 00000 00	estimates	Conclusions OO
	Scheme	Estimate as of May 17	Our estimate	_
	Lizard [CKLS16a, CKLS16b] TESLA [BG14, ABBD15] SEAL v2.1 [CLP17]	129.7131.6 71.0142.0 97.6130.5	85.988.7 61.5122.4 99.6129.5	_
				_

- >>> Security estimates for Lizard (PKE), TESLA
 (Signatures) and SEAL 2.1 (FHE) under the 2016
 model, as of May 2017; more in the paper
- >>> Some schemes were parametrised against the dual attack from [Alb17], which is still (often) cheaper against sparse and small secrets. Nontheless, in those cases the gap between primal and dual attack narrows

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	O	00000	00	●O

Conclusions

>>> We confirmed the validity of the 2016 model [ADPS16]

- >>> Some existing lattice based schemes may need
 reparametrisation to resist cryptanalysis via
 lattice reduction
- >>> The double intersection observation and the difference in success probability between models tell a cautionary tale about extrapolating asymptotics from small dimensional experiments

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	O	00000	OO	●O

Conclusions

- >>> We confirmed the validity of the 2016 model [ADPS16]
- >>> Some existing lattice based schemes may need
 reparametrisation to resist cryptanalysis via
 lattice reduction
- >>> The double intersection observation and the difference in success probability between models tell a cautionary tale about extrapolating asymptotics from small dimensional experiments

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	O	00000	00	●O

Conclusions

- >>> We confirmed the validity of the 2016 model [ADPS16]
- >>> Some existing lattice based schemes may need
 reparametrisation to resist cryptanalysis via
 lattice reduction
- >>> The double intersection observation and the difference in success probability between models tell a cautionary tale about extrapolating asymptotics from small dimensional experiments

Lattice reduction	Experiments	Results	New estimates	Conclusions
000000	0	00000	00	00

Thank you

- >>> Paper @ https://ia.cr/2017/815
- >>> Experiments (code && data) @
 https://github.com/fvirdia/agvw17-code-data
- >>> Estimator [APS15] @
 https://bitbucket.org/malb/lwe-estimator

Lattice reduction 000000	Experiments O	Results 00000	New estimates OO	Conclusions O●
[ABBD15]	Erdem Alkim, Nina Bind TESLA: Tightly-secure	lel, Johannes Buchr efficient signatur	mann, and Özgür Da res from standard	gdelen. lattices.
	Cryptology ePrint Arch http://eprint.iacr.org	ive, Report 2015/ /2015/755.	755, 2015.	
[ADPS16]	Erdem Alkim, Léo Ducas Post-quantum key excha In Thorsten Holz and S Symposium, USENIX Secu 2016.	a, Thomas Pöppelman nge – A new hope. Rtefan Savage, edit arity 16, pages 32	nn, and Peter Schw tors, <i>25th USENIX</i> 7343. USENIX Ass	Mabe. Security Sociation,
[AFG14]	Martin R. Albrecht, Ro On the efficacy of sol In Hyang-Sook Lee and of <i>LNCS</i> , pages 29331	bert Fitzpatrick, ving LWE by reduct Dong-Guk Han, edit 0. Springer, Heide	and Florian Göpfe tion to unique-SVP tors, <i>ICISC 13</i> , vo elberg, November 2	ert. 2. blume 8565 2014.
[Alb17]	Martin R. Albrecht. On dual lattice attack choices in HElib and S In Jean-Sébastien Corc <i>EUROCRYPT 2017, Part 1</i> Springer, Heidelberg,	s against small-se EAL. In and Jesper Buus I, volume 10211 of April / May 2017.	ecret LWE and para Nielsen, editors, f <i>LNCS</i> , pages 103-	
[APS15]	Martin R. Albrecht, Ra On the concrete hardne	chel Player, and S ss of Learning wit	Sam Scott. th Errors.	

Lattice reduction 000000	Experiments O	Results 00000	New estimates	Conclusions O●
[BG14]	Journal of Mathematical Shi Bai and Steven D. G An improved compression with errors.	Cryptology, 9 albraith. technique for	<pre>(3):169203, 2015. signatures based on</pre>	learning
	In Josh Benaloh, editor 2847. Springer, Heide	, <i>CT-RSA 2014</i> , lberg, Februar	volume 8366 of <i>LNCS</i> y 2014.	, pages
[CKLS16a]	Jung Hee Cheon, Duhyeon Lizard: Cut off the tai encryption from LWE and Cryptology ePrint Archi 2016. http://eprint.iacr.org/	g Kim, Joohee l! Practical p LWR. ve, Report 201 2016/1126/2016	Lee, and Yongsoo Song ost-quantum public-k 6/1126 (20161222:071 1222:071525.	g. ey 525),
[CKLS16b]	Jung Hee Cheon, Duhyeor Lizard: Cut off the tai encryption from LWE and Cryptology ePrint Archi http://eprint.iacr.org/	g Kim, Joohee l! Practical p LWR. ve, Report 201 2016/1126.	Lee, and Yongsoo Song ost-quantum public-ko 6/1126, 2016.	g. ey
[CLP17]	Hao Chen, Kim Laine, an Simple encrypted arithm Cryptology ePrint Archi http://eprint.iacr.org/	d Rachel Playe metic library - ve, Report 201 2017/224.	r. SEAL v2.1. 7/224, 2017.	

[FPL17] The FPLLL development team.

Lattice reduction 000000	Experiments O	Results 00000	New estimates OO	Conclusions O●	
	<pre>fplll, a lattice reduc Available at https://g</pre>	tion library. ithub.com/fplll	/fplll, 2017.		
[FPY17]	The FPYLLL development team. fyplll, a Python (2 and 3) wrapper for fplll. Available at https://github.com/fplll/fpylll, 2017.				
[GN08]	Nicolas Gama and Phong Predicting lattice red In Nigel P. Smart, edi pages 3151. Springer	Q. Nguyen. uction. tor, <i>EUROCRYPT</i> , Heidelberg, A	<i>2008</i> , volume 4965 of pril 2008.	LNCS,	