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Lattice reduction cost models

>>> Lattice reduction algorithms are a fundamental tool
for cryptanalysis of lattice-based cryptographic
schemes

>>> A common strategy is to use them to solve the Unique
Shortest Vector Problem as part of ‘primal lattice
attacks’

>>> Costing such algorithms is therefore a fundamental
step for choosing secure parameters

>>> Heads-up: cost models disagree on the asymptotic
complexity
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>>> [GN08] is the first systematic study of lattice
reduction strategies

>>> The work looks at using BKZ for solving Unique-SVP,
using a statistical approach for estimating its
effectiveness

>>> A necessary condition for successful recovery is
obtained

>>> This approach is later applied to LWE embedding
lattices in [AFG14]
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>>> Let Λ be our lattice of dimension d with a unique
shortest vector v (up to ± sign), and let λi be the
i th minima

>>> Let δ be the Hermite factor ⇐⇒ BKZ recovers
vectors long ≈ δdVol(Λ)1/d

>>> If
λ2(Λ)/λ1(Λ) > τδd , for τ ∈ (0, 1) (1)

the shortest vector is recovered
>>> τ is estimated experimentally
>>> (1) ⇒ optimal number of LWE samples m2008 and BKZ

block size β2008 to run the primal attack
>>> We refer to this work as the 2008 model
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>>> [ADPS16] introduces a new success condition for
solving Unique-SVP with BKZ when ‖v‖ is known

>>> The strategy is based on the Geometric Series
Assumption, and on the structure of the BKZ
algorithm

>>> We refer to this work as the 2016 model

>>> To explain the condition we will first review how
BKZ works
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>>> Let {bi}i be Λ’s basis, {b∗i }i their Gram-Schmidt
vectors, and v∗i the projection of v ⊥ {b∗j }i−1
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>>> Let {bi}i be Λ’s basis, {b∗i }i their Gram-Schmidt
vectors, and v∗i the projection of v ⊥ {b∗j }i−1
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>>> Choose β such that ‖v∗d−β+1
‖ < GSA(‖b∗d−β+1

‖)
>>> Instantly solves Decision-LWE
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>>> Choose β such that ‖v∗d−β+1
‖ < GSA(‖b∗d−β+1

‖)
>>> Instantly solves Decision-LWE
>>> Should solve Search-LWE with at most dd/βe − 1 more

SVP oracle calls
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>>> The two models disagree on the primal attack’s
asymptotic complexity
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>>> We decided to experimentally investigate the
accuracy of the 2016 model’s predictions
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Our experiments
>>> Given (n, q, σ), the 2008 model provides parameters

(m2008, β2008) for 10% recovery probability [AFG14]

>>> We pick (m2016, β2016) according to [ADPS16], run BKZ2
and measure the recovery rate

>>> We instrument BKZ to take detailed statistics about
the v∗i length and moment of recovery

>>> To simplify analysis we make some changes to
subroutine calls to LLL

>>> All our experiments were run using the FpyLLL
lattice reduction library [FPL17, FPY17]
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Results
LWE parameters [ADPS16] Experiments
n q σ β2016 m2016 β # recovery

rate

65 521 3.2 56 182 56 10000 93.3%
51 52.8%
46 4.8%

80 1031 3.2 60 204 60 1000 94.2%
55 60.6%
50 8.9%
45 0.2%

100 2053 3.2 67 243 67 500 88.8%
62 39.6%
57 5.8%
52 0.2%

108 2053 3.2 77 261 77 5 100.0%

110 2053 3.2 78 272 78 5 100.0%
10/18
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>>> Experiments agree with the 2016 model, but we
noticed two unexpected behaviours

>>> First, while expecting BKZ to recover v∗d−β+1
,

for small experiments we observed
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i = d − γi = d − β + 1− γ

basis index i

GSA(‖b∗i ‖)
E[‖v∗i ‖]

>>> v∗i is first recovered at the rightmost intersection
at i = d − γ

>>> In the next tour this projection is extended at
i = d − β + 1− γ

>>> The double intersection is not common for
cryptographically chosen parameters, and can be
easily avoided
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>>> Second, 99.7%+ of the time v is recovered
immediately after the SVP oracle finds its
projection

>>> We model the state of the bases after first finding
v∗d−β+1
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>>> Lemma For β > 40, Size Reduction recovers v from
v∗d−β+1

with overwhelming probability
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New security estimates

>>> We added the 2016 model to the LWE estimator from
[APS15], and used it to recost the primal attack
against proposed schemes (as of May 2017)

>>> For each scheme we used their proposed cost strategy
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Scheme Estimate as of
May 17 Our estimate

Lizard [CKLS16a, CKLS16b] 129.7--131.6 85.9--88.7
TESLA [BG14, ABBD15] 71.0--142.0 61.5--122.4
SEAL v2.1 [CLP17] 97.6--130.5 99.6--129.5

>>> Security estimates for Lizard (PKE), TESLA
(Signatures) and SEAL 2.1 (FHE) under the 2016
model, as of May 2017; more in the paper

>>> Some schemes were parametrised against the dual
attack from [Alb17], which is still (often) cheaper
against sparse and small secrets. Nontheless, in
those cases the gap between primal and dual attack
narrows
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Conclusions

>>> We confirmed the validity of the 2016 model [ADPS16]

>>> Some existing lattice based schemes may need
reparametrisation to resist cryptanalysis via
lattice reduction

>>> The double intersection observation and the
difference in success probability between models
tell a cautionary tale about extrapolating
asymptotics from small dimensional experiments
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Thank you

>>> Paper @ https://ia.cr/2017/815
>>> Experiments (code && data) @

https://github.com/fvirdia/agvw17-code-data
>>> Estimator [APS15] @

https://bitbucket.org/malb/lwe-estimator
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