Losing your Groverhead: new upper bounds and Q# implementations of AES and LowMC

Samuel Jaques¹, Michael Naehrig², Martin Roetteler³, **Fernando Virdia**⁴

¹Department of Materials, University of Oxford, UK
 ²Microsoft Research, Redmond, WA, USA
 ³Microsoft Quantum, Redmond, WA, USA
 ⁴Information Security Group, Royal Holloway, University of London, UK

Quantum Cryptanalysis 2019 Schloss Dagstuhl

<ロト < 同ト < 回ト < 回ト = 三.

Sac

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

Overview

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
•0	0	00000	000000	000000000000000	00	000

AES [DR01] is a block cipher standardized by NIST in '01.

Key lengths in $\{128, 192, 256\}$ bits, block size 128 bits.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
•0	0	00000	000000	00000000000000	00	000

AES [DR01] is a block cipher standardized by NIST in '01. Key lengths in {128, 192, 256} bits, block size 128 bits. AES-128 (resp. -192, -256) uses 10 (resp. 12, 14) rounds.

Figure: AES round design.

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

AES

0.

The round key is expanded from the ciphers' key, and 128 bits are XOR'd on the state each round.

Figure: AES-128 key expansion 'round'. Credit: Jérémy Jean.

イロト 不得 トイヨト イヨト ニヨー

Sac

The round key is expanded from the ciphers' key, and 128 bits are XOR'd on the state each round.

Figure: AES-128 key expansion 'round'. Credit: Jérémy Jean.

ShiftRow and RotByte are permutations.

AES

0

- ¹ MixColumn is an invertible linear transformation.
- ByteSub and SubByte are byte-wise applications of the S-box, which computes inversion in \mathbb{F}_{2^8} (and maps $0 \mapsto 0$).

ES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
0	•	00000	000000	00000000000000	00	000

А

Solution Grover's search [Gro96] is a quantum algorithm for finding elements in unsorted lists of size N.

$$\frac{\frac{\pi}{4}\sqrt{N} \text{ times}}{\sum_{i=0}^{N-1}|i\rangle} \underbrace{-\overline{U_f}}_{G} \underbrace{-\overline{G}}_{W} \underbrace{-\overline{U_f}}_{W} \underbrace{-\overline{G}}_{W} \underbrace{-\overline{G}}$$

Figure: Grover's search sketch.

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

ES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
0	•	00000	000000	00000000000000	00	000

Solution Grover's search [Gro96] is a quantum algorithm for finding elements in unsorted lists of size N.

$$\frac{\frac{\pi}{4}\sqrt{N} \text{ times}}{\sum_{i=0}^{N-1}|i\rangle} \underbrace{-\overline{U_f}}_{G} \underbrace{-\overline{G}}_{H} \underbrace{-\overline{G}}_{$$

Figure: Grover's search sketch.

[§] U_f is a quantum circuit mapping $|x\rangle |y\rangle \mapsto |x\rangle |y \oplus f(x)\rangle$, where f(x) = (x == target).

G is a "reflection around the mean" operation.

LowMC

- 日本 - 4 日本 - 日本 - 日本

500

Future directions

- A quantum circuit is a sequence of unitary operators (and measurements).
- Width: the maximum number of qubits used.
- Depth: the number of sequential "basic" operations.
- Some complex operations can be constructed from simple (universal) sets of gates. We use Clifford + T.

Figure: Quantum circuit example.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	0000	000000	000000000000000000000000000000000000000	00	000

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

We only work with logical qubits.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

We only work with logical qubits.

- We do not assume any particular framework (e.g. the surface code).
 - Hence no costs for idle qubits or need for gates to operate locally.

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

• But also no speedups like free CNOT fan-outs.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	0000	000000	000000000000000	00	000

We only work with logical qubits.

- We do not assume any particular framework (e.g. the surface code).
 - Hence no costs for idle qubits or need for gates to operate locally.
 - But also no speedups like free CNOT fan-outs.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	0000	000000	000000000000000	00	000

We only work with logical qubits.

- We do not assume any particular framework (e.g. the surface code).
 - Hence no costs for idle qubits or need for gates to operate locally.
 - But also no speedups like free CNOT fan-outs.
- Swapping qubits is free, by "rewiring" (keeping track of the swaps).

This is not necessarily "realistic", but is what the previous literature on AES (and hence NIST in [Nat16]) uses.

Now a quick look at basic tools: gates, linear programs, constant matrix multiplication.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	0000	000000	00000000000000	00	000

Now a quick look at basic tools: gates, linear programs, constant matrix multiplication.

It is a start works as an in-place classical NOT.

 $\ket{a} - X - \ket{a \oplus 1}$

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	0000	000000	000000000000000000000000000000000000000	00	000

Now a quick look at basic tools: gates, linear programs, constant matrix multiplication.

X gate, works as an in-place classical NOT. $|a\rangle - X - |a \oplus 1\rangle$

Solution CNOT gate, works similarly to an XOR gate . $|a\rangle \rightarrow |a\rangle$

 $\begin{array}{c} |a\rangle & - |a\rangle \\ |b\rangle & - |a \oplus b\rangle \end{array}$

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

S	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
)	0	00000	000000	00000000000000	00	000

Now a quick look at basic tools: gates, linear programs, constant matrix multiplication.

 # X gate, works as an in-place classical NOT. $|a\rangle - X - |a \oplus 1\rangle$

ightarrow CNOT gate, works similarly to an XOR gate .

$$egin{array}{c} |a
angle & ---- |a
angle \\ b
angle & ---- |a\oplus b
angle \end{array}$$

Toffoli (aka CCNOT), works similarly to an AND gate.

$$egin{array}{c|c|c|c|c|c|c|} |a
angle & ---- |a
angle \\ |b
angle & ---- |b
angle \\ |c
angle & ---- |c\oplus (a\cdot b)
angle \end{array}$$

・ロト・西ト・ヨト・ヨー うへつ

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	00000000000000	00	000

Linear programs are sequences of $w \leftarrow x \star y$, for some binary operation \star .

t_1	=	$x_2 + x_3$	t_2	=	$x_2 \times x_0$	t_3	=	$x_1 + t_2$
t_4	=	$x_0 + x_1$	t_5	=	$x_3 + t_2$	t_6	=	$t_5 \times t_4$
t_7	=	$t_3 \times t_1$	t_8	=	$x_0 \times x_3$	t_9	=	$t_4 \times t_8$
t_{10}	=	$t_4 + t_9$	t_{11}	=	$x_1 \times x_2$	t_{12}	=	$t_1 \times t_{11}$
t_{13}	=	$t_1 + t_{12}$	y_0	=	$t_2 + t_{13}$	y_1	=	$x_3 + t_7$
y_2	=	$t_2 + t_{10}$	y_3	=	$x_1 + t_6$			

Figure 1: Inversion in $GF(2^4)$. Input is (x_0, x_1, x_2, x_3) and output is (y_0, y_1, y_2, y_3) .

These can be easily translated into Q# by writing the appropriate self-inverse operators $(x, y, z) \mapsto (x, y, z \oplus (x \star y))$.

Image taken from [BP11].

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

Multiplication by constant matrices:

- Naively, using ancilla qubits (b).
- Rearranging operations from the naive version will help.
 - Invertible matrices can be inplemented in-place by PLU decomposing them [TB97] (c).

And the P is for free!

(a) Invertible linear transformation M and its PLU decomposition.

Fig. 1. Alternative circuits implementing the same linear transformation $M \colon \mathbb{F}_2^4 \to \mathbb{F}_2^4$, by using the two strategies described in Section 2.3.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ● ● ● ●

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	●00000	000000000000000000000000000000000000000	00	000

[§] [Y100] introduces the idea of using Grover's to attack block ciphers with keylength k in $O(2^{k/2})$ "operations" (U_f and G).

Grassl et al. [GLRS16] provide the first cost estimate for U_f (and disregard G, we do the same!).

Component	[GLRS16] design
ShiftRow, RotByte	Rewiring (free)
MixColumn	Multiplication by constant in $\mathbb{F}_{2^8}[x]/(x^4+1)$: Invertible linear map, hence PLU decomposition
S-box	Inversion $\equiv ((\alpha \cdot \alpha^2) \cdot (\alpha \cdot \alpha^2)^4 \cdot (\alpha \cdot \alpha^2)^{16} \cdot \alpha^{64})^2$ in $\mathbb{F}_2[x]/\langle x^8 + x^4 + x^3 + x + 1 \rangle$:
AddRoundKey	Bitwise XOR/CNOT
KeyExpansion	Caching of "expensive" bytes + recomputing of "cheap" ones
Rounds	"Pebbling" to reduce the number of ancilla qubits

AES Grover's search Quantum circuits **Previous work** Our improvements LowMC Future directions 00 0 0000 000000000000 00 000 000

When computing rounds, they try to tradeoff between circuit width and depth, using a "pebbling" strategy.

Figure: Round pebbling strategy for AES-128 in [GLRS16].

イロト 不得 トイヨト イヨト ニヨー

500

AES

- Given any block cipher C: $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$, for any (m,c) pair there may be multiple K such that C(K,m) = c.
- Hence, when doing exhaustive key search, multiple (m_i, c_i) pairs may be needed to uniquely determine a key K whp.
- IGLRS16] find that for AES-128 (resp. -192, -256), 3 (resp. 4, 5) pairs are needed when implementing U_f .

Figure: Example AES U_f for two (m_i, c_i) pairs.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000	00	000

Overall, Grassl et al. estimate the cost of U_f as follows.

scheme	#(1qCliff+CNOT)	#T	T-depth	full depth	width	G-cost	DW-cost
AES-128	$1.55 \cdot 2^{86}$	$1.19 \cdot 2^{86}$	$1.06 \cdot 2^{80}$	$1.16 \cdot 2^{81}$	2 953	$1.37 \cdot 2^{87}$	$1.67 \cdot 2^{92}$
AES-192	$1.17 \cdot 2^{119}$	$1.81\cdot2^{118}$	$1.21\cdot2^{112}$	$1.33\cdot2^{113}$	4 4 4 9	$1.04 \cdot 2^{120}$	$1.44\cdot2^{125}$
AES-256	$1.83 \cdot 2^{151}$	$1.41\cdot2^{151}$	$1.44 \cdot 2^{144}$	$1.57 \cdot 2^{145}$	6 681	$1.62\cdot2^{152}$	$1.28 \cdot 2^{158}$

Table: Circuit size for U_f as in [GLRS16].

4 日 ト 4 目 ト 4 目 ト 4 目 - 9 4 (や)

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

- In 2016, NIST puts out a call for post-quantum cryptography proposals [Nat16].
- Regarding quantum computation capabilities, they suggest having a MAXDEPTH $\in \{2^{40}, 2^{64}, 2^{96}\}$ parameter bounding quantum computation depth.
- They also define security "categories" 1, 3, and 5, based on the hardness of key recovery against AES-128, -192, -256.

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	00000000000000	00	000

- In 2016, NIST puts out a call for post-quantum cryptography proposals [Nat16].
- Regarding quantum computation capabilities, they suggest having a MAXDEPTH $\in \{2^{40}, 2^{64}, 2^{96}\}$ parameter bounding quantum computation depth.
- They also define security "categories" 1, 3, and 5, based on the hardness of key recovery against AES-128, -192, -256.
- Early termination of Grover's search results in low success probabilities.
- Hence, due to MAXDEPTH, Grover's search against AES needs to be parallelised.

For Grover's search, Zalka [Zal99] showed that using S machines saves only \sqrt{S} depth, optimally.

AES

For Grover's search, Zalka [Zal99] showed that using S machines saves only \sqrt{S} depth, optimally.

NIST's reasoning:

AES

Say non-parallel Grover's search requires depth
 D = x ⋅ MAXDEPTH, for some x > 1 and G gates.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For Grover's search, Zalka [Zal99] showed that using S machines saves only \sqrt{S} depth, optimally.

NIST's reasoning:

AES

- Say non-parallel Grover's search requires depth $D = x \cdot MAXDEPTH$, for some $x \ge 1$ and G gates.
- To cut depth by x, x^2 machines are needed. Each uses $\approx G/x$ gates.

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

For Grover's search, Zalka [Zal99] showed that using S machines saves only \sqrt{S} depth, optimally.

NIST's reasoning:

AES

- Say non-parallel Grover's search requires depth $D = x \cdot MAXDEPTH$, for some $x \ge 1$ and G gates.
- To cut depth by x, x^2 machines are needed. Each uses $\approx G/x$ gates.

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

• Total gate count: $(G/x) \cdot x^2 = G \cdot D/MAXDEPTH$.

Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future direction
0	00000	000000	000000000000000	00	000

For Grover's search, Zalka [Zal99] showed that using S machines saves only \sqrt{S} depth, optimally.

NIST's reasoning:

AES

- Say non-parallel Grover's search requires depth $D = x \cdot \text{MAXDEPTH}$, for some $x \ge 1$ and G gates.
- To cut depth by x, x^2 machines are needed. Each uses $\approx G/x$ gates.
- Total gate count: $(G/x) \cdot x^2 = G \cdot D/MAXDEPTH$.
- Using *D* and *G* from [GLRS16], they deduce the security categories' requirements.

AES 128	2 ¹⁷⁰ /MAXDEPTH quantum gates
AES 192	2 ²³³ /MAXDEPTH quantum gates
AES 256	2 ²⁹⁸ /MAXDEPTH quantum gates

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	•0000000000000	00	000

- Our initial idea: NIST cares about limiting depth, but uses [GLRS16] which optimizes for width. What if we minimize depth?
- Hindsight: parallelisation is bad, so crucially beneficial to minimise depth!
- $rac{1}{8}$ We also get a Q# implementation:
 - testable,
 - ${\scriptstyle \bullet \,}$ friendly to read/modify,
 - automated circuit size estimates,
 - easy to translate linear programs/verilog using regexes!

ES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
0	0	00000	000000	000000000000000000000000000000000000000	00	000

We look now at our design choices for a smaller Grover oracle for AES.

S-box: well investigated in the hardware literature.

Lots of linear programs to translate and test.

🕸 Tried various variants of [BP11].

- Scooped! In concurrent indepedent work, Langenberg et al. [LPS19] propose a similar S-box change.
 - They keep the same pebbling strategy of [GLRS16] and provide only an implementation of their S-box.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

- Inside their S-box, [GLRS16] use a 7 T-gates implementation of Toffoli.
- We replace Toffoli with AND gates, using a custom design by Mathias Soeken, based on Selinger [Sel13] and Gidney [Gid18].

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Figure: AND gate with T-depth 1, T count 4, and "T-free" adjoint operator. It does introduce measurements.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

KeyExpansion: instead of caching, we do in-place expansion as necessary.

Figure: AES 192 in-place *i*th round key expansion.

This saves us qubits with respect to naive full expansion, while not increasing depth due to the computations running in parallel to the round.

Figure: AES 192 round structure.

3

Dac

Indeed, rounds only require 128 bits of expanded key at every time.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

Other improvements:

- We cost both the PLU-decomposed in-place MixColumn design, and a recent, shallower (but wider) design by Maximov [Max19].
- Fix to the key uniqueness computation: 3, 4, 5 pairs are too many!
 - For $p \approx 1$ attacks, 2, 2, 3 pairs are enough.
 - As Langenberg et al. [LPS19] also noticed, we suggest using 1, 2, 2 pairs for high probability attacks ($\approx 1/e, \approx 1, \approx 1/e$) when using unbounded Grover's.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	00000000000000	00	000

	Grassl et al. [GLRS16]								
scheme	#(1qCliff+CNOT)	#T	#M	T-depth	full depth	width	G-cost	DW-cost	$p_{ m succ}$
AES-128 (r = 3)	$1.55 \cdot 2^{86}$	$1.19 \cdot 2^{86}$	0	$1.06 \cdot 2^{80}$	$1.16 \cdot 2^{81}$	2 953	$1.37 \cdot 2^{87}$	$1.67 \cdot 2^{92}$	≈ 1
AES-192 (r = 4)	$1.17 \cdot 2^{119}$	$1.81 \cdot 2^{118}$	0	$1.21 \cdot 2^{112}$	$1.33\cdot2^{113}$	4 4 4 9	$1.04 \cdot 2^{120}$	$1.44 \cdot 2^{125}$	≈ 1
AES-256 (r = 5)	$1.83 \cdot 2^{151}$	$1.41 \cdot 2^{151}$	0	$1.44 \cdot 2^{144}$	$1.57 \cdot 2^{145}$	6 681	$1.62 \cdot 2^{152}$	$1.28 \cdot 2^{158}$	≈ 1
Langenberg et al. [LPS19]									
AES-128 (r = 1)	$1.46 \cdot 2^{82}$	$1.47 \cdot 2^{81}$	0	$1.44 \cdot 2^{77}$	$1.39\cdot2^{79}$	865	$1.10\cdot2^{83}$	$1.17 \cdot 2^{89}$	pprox 1/e
AES-192 (r = 2)	$1.71 \cdot 2^{115}$	$1.68 \cdot 2^{114}$	0	$1.26 \cdot 2^{109}$	$1.23\cdot2^{111}$	1 793	$1.27 \cdot 2^{116}$	$1.08 \cdot 2^{122}$	≈ 1
AES-256 (r = 2)	$1.03 \cdot 2^{148}$	$1.02 \cdot 2^{147}$	0	$1.66 \cdot 2^{141}$	$1.61 \cdot 2^{143}$	2 465	$1.54 \cdot 2^{148}$	$1.94 \cdot 2^{154}$	pprox 1/e
			this wor	k					
AES-128 (IP MC, r = 1)	$1.13 \cdot 2^{82}$	$1.32 \cdot 2^{79}$	$1.32 \cdot 2^{77}$	$1.48 \cdot 2^{70}$	$1.08 \cdot 2^{75}$	1665	$1.33 \cdot 2^{82}$	$1.76 \cdot 2^{85}$	$\approx 1/e$
AES-128 (IP MC, r = 2)	$1.13 \cdot 2^{83}$	$1.32 \cdot 2^{80}$	$1.32\cdot2^{78}$	$1.48 \cdot 2^{70}$	$1.08 \cdot 2^{75}$	3329	$1.34 \cdot 2^{83}$	$1.75 \cdot 2^{86}$	≈ 1
AES-192 (IP MC, r = 2)	$1.27 \cdot 2^{115}$	$1.47\cdot2^{112}$	$1.47 \cdot 2^{110}$	$1.47 \cdot 2^{102}$	$1.14 \cdot 2^{107}$	3969	$1.50 \cdot 2^{115}$	$1.11 \cdot 2^{119}$	≈ 1
AES-256 (IP MC, r = 2)	$1.56 \cdot 2^{147}$	$1.81 \cdot 2^{144}$	$1.81 \cdot 2^{142}$	$1.55 \cdot 2^{134}$	$1.29\cdot2^{139}$	4609	$1.84 \cdot 2^{147}$	$1.45\cdot2^{151}$	pprox 1/e
AES-256 (IP MC, $r = 3$)	$1.17 \cdot 2^{148}$	$1.36\cdot2^{145}$	$1.36 \cdot 2^{143}$	$1.55 \cdot 2^{134}$	$1.28 \cdot 2^{139}$	6913	$1.38 \cdot 2^{148}$	$1.08 \cdot 2^{152}$	≈ 1

Table: Comparison of cost estimates for Grover's algorithm with $\lfloor \frac{\pi}{4} 2^{k/2} \rfloor$ AES oracle iterations, minimising *G*-cost (in-place MixColumn beats Maximov's here).

ES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
С	0	00000	000000	00000000000000	00	000

- What can we do about the depth constraint? AES-128 in MAXDEPTH = 2^{96} is the only attack fitting.
- Boyer et al. [BBHT98] propose the following when searching a list of size N:
 - 1. Run 0.583 \sqrt{N} Grover iterations.

A

- 2. Measure. If output is wrong, go to 1.
- in theory, the expected number of iterations to win becomes $0.690\sqrt{N} < \frac{\pi}{4}\sqrt{N}$.
- In practice, most often one needs to repeat step 1. at least twice $\implies 1.166\sqrt{N} > \frac{\pi}{4}\sqrt{N}$ iterations.

Only chance we have is parallelising. Two strategies, using Kim, Han, and Jeong [KHJ18] nomenclature.

S	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
	0	00000	000000	000000000000000	00	000

- Only chance we have is parallelising. Two strategies, using Kim, Han, and Jeong [KHJ18] nomenclature.
- "Outer parallelisation":

• Have S machines run $j \leq \frac{\pi}{4}\sqrt{N}$ iterations independently.

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

S	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
	0	00000	000000	000000000000000	00	000

- Only chance we have is parallelising. Two strategies, using Kim, Han, and Jeong [KHJ18] nomenclature.
- "Outer parallelisation":

AE:

- Have S machines run $j \leq \frac{\pi}{4}\sqrt{N}$ iterations independently.
- Measure a candidate solution from each machine, and classically check them.

S	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
	0	00000	000000	000000000000000	00	000

- Only chance we have is parallelising. Two strategies, using Kim, Han, and Jeong [KHJ18] nomenclature.
- "Outer parallelisation":

- Have S machines run $j \leq \frac{\pi}{4}\sqrt{N}$ iterations independently.
- Measure a candidate solution from each machine, and classically check them.
- Total success probability is $p_S(j) = 1 (1 p(j))^S$, where p(j) is the success probability for a single machine.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

S	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
	0	00000	000000	000000000000000	00	000

- Only chance we have is parallelising. Two strategies, using Kim, Han, and Jeong [KHJ18] nomenclature.
- "Outer parallelisation":

- Have S machines run $j \leq \frac{\pi}{4}\sqrt{N}$ iterations independently.
- Measure a candidate solution from each machine, and classically check them.
- Total success probability is $p_S(j) = 1 (1 p(j))^S$, where p(j) is the success probability for a single machine.
- We want to reduce depth by \sqrt{S} . Then, S machines $\implies j = \frac{\pi}{4} \sqrt{\frac{N}{S}}$ iterations. As $S \to \infty$, $p_S(j) \to 0.915$.

< ロ ト < 回 ト < 三 ト < 三 ト < 三 の < で</p>

S	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
	0	00000	000000	000000000000000	00	000

- Only chance we have is parallelising. Two strategies, using Kim, Han, and Jeong [KHJ18] nomenclature.
- "Outer parallelisation":

- Have S machines run $j \leq \frac{\pi}{4}\sqrt{N}$ iterations independently.
- Measure a candidate solution from each machine, and classically check them.
- Total success probability is $p_S(j) = 1 (1 p(j))^S$, where p(j) is the success probability for a single machine.
- We want to reduce depth by \sqrt{S} . Then, S machines $\implies j = \frac{\pi}{4} \sqrt{\frac{N}{S}}$ iterations. As $S \to \infty$, $p_S(j) \to 0.915$.
- Hence there is no "outer" strategy with $p \approx 1$ that saves \sqrt{S} depth.

• The total search space has size *N*. Partition it into *S* disjoint subsets. Only one subset contains the correct key.

- The total search space has size *N*. Partition it into *S* disjoint subsets. Only one subset contains the correct key.
- Have S machines run $j \le \frac{\pi}{4}\sqrt{N}$ iterations, each on a different subset of size N/S.

- The total search space has size *N*. Partition it into *S* disjoint subsets. Only one subset contains the correct key.
- Have S machines run $j \le \frac{\pi}{4}\sqrt{N}$ iterations, each on a different subset of size N/S.

• Measure a candidate solution from each machine, and classically check them.

- The total search space has size *N*. Partition it into *S* disjoint subsets. Only one subset contains the correct key.
- Have S machines run $j \le \frac{\pi}{4}\sqrt{N}$ iterations, each on a different subset of size N/S.
- Measure a candidate solution from each machine, and classically check them.
- We want to reduce depth by \sqrt{S} . Again, S machines $\implies j = \frac{\pi}{4}\sqrt{\frac{N}{5}}$ iterations. But now, these are the right number of iterations to find the key with $p \approx 1$ in its subset of size N/S!

- The total search space has size *N*. Partition it into *S* disjoint subsets. Only one subset contains the correct key.
- Have S machines run $j \le \frac{\pi}{4}\sqrt{N}$ iterations, each on a different subset of size N/S.
- Measure a candidate solution from each machine, and classically check them.
- We want to reduce depth by \sqrt{S} . Again, S machines $\implies j = \frac{\pi}{4}\sqrt{\frac{N}{5}}$ iterations. But now, these are the right number of iterations to find the key with $p \approx 1$ in its subset of size N/S!
- In all but one subset we measure a wrong key, in the right subset we measure the correct key. Classically check each, to win with probability $p \approx 1$.

Grover's search Qua

AES

Quantum circuits 00000 Previous work 000000 Our improvements

LowMC 00

Future directions

There's a further advantage of inner parallelisation, when looking for the right key K.

Take AES-128. We said we need 2 plaintext-ciphertext pairs to uniquely identify $K \in \mathbb{K} = \{0,1\}^{128}$ (i.e. whp no other keys map $m_i \mapsto c_i$ for i = 1, 2).

Grover's search Quantum circuits 0 00000

AES

Previous work

Our improvements

LowMC F

Future directions

There's a further advantage of inner parallelisation, when looking for the right key *K*.

Take AES-128. We said we need 2 plaintext-ciphertext pairs to uniquely identify $K \in \mathbb{K} = \{0, 1\}^{128}$ (i.e. whp no other keys map $m_i \mapsto c_i$ for i = 1, 2).

Solution Using 1 pair, the probability of only K mapping $m \mapsto c$ exists in \mathbb{K} is 1/e.

くちゃく 聞き ふぼき ふぼう ふりゃ

Grover's search Quantum circuits 0 00000

AFS

Previous work 000000 Our improvements

LowMC Fi

Future directions

There's a further advantage of inner parallelisation, when looking for the right key K.

- Take AES-128. We said we need 2 plaintext-ciphertext pairs to uniquely identify $K \in \mathbb{K} = \{0, 1\}^{128}$ (i.e. whp no other keys map $m_i \mapsto c_i$ for i = 1, 2).
- Solution Using 1 pair, the probability of only K mapping $m \mapsto c$ exists in \mathbb{K} is 1/e.
- We Now partition \mathbb{K} into S subsets, say $K \in \mathbb{K}_K \subset \mathbb{K}$. The probability that another "spurious" key mapping $m \mapsto c$ exists in \mathbb{K}_K is now smaller than 1 1/e.
- Hence using inner parallelisation increases the success probability of the attack when using 1 plaintext-ciphertext pair. It works similarly for AES-192 and AES-256.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

scheme	MD	r	S	$\log_2{(SKP)}$	D	W	G-cost	DW-cost
AES-128	2 ⁴⁰	1	$1.28\cdot2^{69}$	-69.36	$1.00\cdot 2^{40}$	$1.76\cdot 2^{80}$	$1.07\cdot 2^{117}$	$1.76\cdot 2^{120}$
AES-192	2 ⁴⁰	1	$1.04\cdot 2^{133}$	-69.05	$1.00\cdot 2^{40}$	$1.72\cdot 2^{144}$	$1.09\cdot 2^{181}$	$1.72\cdot 2^{184}$
AES-256	2 ⁴⁰	1	$1.12\cdot 2^{197}$	-69.16	$1.00\cdot 2^{40}$	$1.08\cdot 2^{209}$	$1.39\cdot2^{245}$	$1.08\cdot 2^{249}$
AES-128	2 ⁶⁴	1	$1.28\cdot2^{21}$	-21.36	$1.00\cdot 2^{64}$	$1.76\cdot2^{32}$	$1.07\cdot 2^{93}$	$1.76\cdot 2^{96}$
AES-192	2 ⁶⁴	1	$1.04\cdot 2^{85}$	-21.05	$1.00\cdot 2^{64}$	$1.72\cdot 2^{96}$	$1.09\cdot 2^{157}$	$1.72\cdot 2^{160}$
AES-256	2 ⁶⁴	1	$1.12\cdot 2^{149}$	-21.16	$1.00\cdot 2^{64}$	$1.08\cdot 2^{161}$	$1.39\cdot 2^{221}$	$1.08\cdot 2^{225}$
AES-128*	2 ⁹⁶	2	$1.00\cdot 2^0$	$-\infty$	$1.08\cdot 2^{75}$	$1.63\cdot 2^{11}$	$1.34\cdot2^{83}$	$1.75\cdot2^{86}$
AES-192	2 ⁹⁶	2	$1.05\cdot 2^{21}$	$-\infty$	$1.00\cdot 2^{96}$	$1.74\cdot 2^{33}$	$1.09\cdot 2^{126}$	$1.74\cdot 2^{129}$
AES-256	2 ⁹⁶	2	$1.12\cdot 2^{85}$	-85.16	$1.00\cdot 2^{96}$	$1.09\cdot 2^{98}$	$1.39\cdot 2^{190}$	$1.09\cdot 2^{194}$

Table: Cost estimates for *inner* parallelization. *r* is the number of plaintext-ciphertext pairs used. SKP is the probability that spurious keys are present in \mathbb{K}_{K} . All circuits use Maximov's [Max19] MixColumns (shallower designs have a better advantage when parallelising) except for AES-128 at MAXDEPTH = 2^{96} .

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000	00	000

Say a candidate scheme for category 5 does a similar analysis, and the best quantum attack with MAXDEPTH = 2^{40} requires $S = 2^{230}$ G-cost.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	0000000000000000	00	000

- Say a candidate scheme for category 5 does a similar analysis, and the best quantum attack with MAXDEPTH = 2^{40} requires $S = 2^{230}$ G-cost.
 - Does it not meet the criteria? Nobody is going to build 2¹⁹⁷ quantum computers anyway, so Grover is not really an attack against AES-256 there.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	0000000000000000	00	000

- Say a candidate scheme for category 5 does a similar analysis, and the best quantum attack with MAXDEPTH = 2^{40} requires $S = 2^{230}$ G-cost.
 - Does it not meet the criteria? Nobody is going to build 2¹⁹⁷ quantum computers anyway, so Grover is not really an attack against AES-256 there.

Logical qubits better be free.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	0000000000000000	00	000

- Say a candidate scheme for category 5 does a similar analysis, and the best quantum attack with MAXDEPTH = 2^{40} requires $S = 2^{230}$ G-cost.
 - Does it not meet the criteria? Nobody is going to build 2¹⁹⁷ quantum computers anyway, so Grover is not really an attack against AES-256 there.
- Logical qubits better be free. Should we introduce MAXWIDTH? What would it mean?
 - Maybe that we try to fit Grover within MAXWIDTH, compute the success probability for the resulting attack, and then do the same for candidates ("Cat 5, MD 2⁴⁰, MW × means no quantum attack with success prob $\geq 2^{-...}$ ")?

Finally, we can recompute NIST's table, taking into account inner parallelisation advantages.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	•000000000000	00	000

Finally, we can recompute NIST's table, taking into account inner parallelisation advantages.

NIST Security			G-cost for MAXI	DEPTH	
Strength Category	source	2 ⁴⁰	2 ⁶⁴	2 ⁹⁶	approximation
1 AES-128	[Nat16] this work	2 ¹³⁰ 1.07 · 2 ¹¹⁷	2 ¹⁰⁶ 1.07 · 2 ⁹³	2 ⁷⁴ *1.34 · 2 ⁸³	$2^{170}/{ ext{Maxdepth}}$ $pprox 2^{157}/{ ext{Maxdepth}}$
3 AES-192	[Nat16] this work	2 ¹⁹³ 1.09 · 2 ¹⁸¹	2 ¹⁶⁹ 1.09 · 2 ¹⁵⁷	2 ¹³⁷ 1.09 · 2 ¹²⁶	$2^{233}/\text{Maxdepth}$ $pprox 2^{221}/\text{Maxdepth}$
5 AES-256	[Nat16] this work	2 ²⁵⁸ 1.39 · 2 ²⁴⁵	2 ²³⁴ 1.39 · 2 ²²¹	2 ²⁰² 1.39 · 2 ¹⁹⁰	$2^{298}/{ m Maxdepth}$ $pprox 2^{285}/{ m Maxdepth}$

Table: *approximation* displays the formula used by NIST in [Nat16] for NIST numbers and a rough approximation that would replace the NIST formula based on our results.

AES	Grover's search	Quantum circuits	Previous work	Our improvements
00	0	00000	000000	000000000000000000000000000000000000000

LowMC ●○ Future directions

LowMC

Grover's search Quantum circuits Previous work Our improvements LowMC Future directions 0 00000 00000000000000 00 000

LowMC [ARS⁺15, ARS⁺16] is a block cipher family designed for FHE and MPC.

It is used as part of the Picnic [ZCD+17] submission for post-quantum digital signatures.

•	
CA 1	
* @K	
-0-	

AES

We used the same to	ols used for AES.
---------------------	-------------------

scheme	MD	r	S	$\log_2(SKP)$	D	W	G-cost	DW-cost
LowMC L1	2 ⁴⁰	1	$1.40\cdot2^{80}$	-80.48	$1.00\cdot 2^{40}$	$1.08\cdot 2^{91}$	$1.25\cdot2^{123}$	$1.08\cdot2^{131}$
LowMC L3	2 ⁴⁰	1	$1.83\cdot2^{147}$	-147.87	$1.00\cdot 2^{40}$	$1.06\cdot 2^{159}$	$1.65\cdot 2^{190}$	$1.06\cdot 2^{199}$
LowMC L5	2 ⁴⁰	1	$1.08\cdot 2^{214}$	-214.11	$1.00\cdot 2^{40}$	$1.61\cdot 2^{225}$	$1.99\cdot 2^{256}$	$1.61\cdot 2^{265}$
LowMC L1	2 ⁶⁴	1	$1.40\cdot 2^{32}$	-32.48	$1.00\cdot 2^{64}$	$1.08\cdot2^{43}$	$1.25\cdot2^{99}$	$1.08\cdot2^{107}$
LowMC L3	2^{64}	1	$1.83\cdot 2^{99}$	-99.87	$1.00\cdot 2^{64}$	$1.06\cdot 2^{111}$	$1.65\cdot 2^{166}$	$1.06\cdot 2^{175}$
LowMC L5	2 ⁶⁴	1	$1.08\cdot 2^{166}$	-166.11	$1.00\cdot 2^{64}$	$1.61 \cdot 2^{177}$	$1.99\cdot 2^{232}$	$1.61\cdot 2^{241}$
LowMC L1	2 ⁹⁶	2	$1.00\cdot 2^0$	$-\infty$	$1.18\cdot 2^{80}$	$1.55\cdot2^{11}$	$1.06\cdot 2^{84}$	$1.83\cdot2^{91}$
LowMC L3	2 ⁹⁶	1	$1.83\cdot 2^{35}$	-35.87	$1.00\cdot 2^{96}$	$1.06\cdot 2^{47}$	$1.65\cdot 2^{134}$	$1.06\cdot 2^{143}$
LowMC L5	2 ⁹⁶	1	$1.08\cdot 2^{102}$	-102.11	$1.00\cdot 2^{96}$	$1.61\cdot 2^{113}$	$1.99\cdot 2^{200}$	$1.61\cdot 2^{209}$

Table: Cost estimates for parallel Grover key search against LowMC under a depth limit MAXDEPTH with *inner* parallelization. $\square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square$

\ES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000	00	●00

Further research directions:

- Improve the AES oracle with better S-boxes
 - Sacrificing simulatability, it would be possible to use a compiler based on [GKMR14, ZC19] to automatically synthetise smaller circuits.
 - An orthogonal automatic technique could be to use the classical circuit minimizer by [MSR⁺19, MSC⁺19] to attempt to further reduce the linear program components.

Improve the LowMC design by adopting the approach from $[DKP^+19]$.

Redo the analysis in the surface code setting (it would require new implementations probably, maybe a specific surface-code compiler).

AES .	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000	00	000

- Take some of the quantum algorithms proposed for the candidates (most use Grover), and do a similar analysis of their quantum component. Do they always/never/sometimes hit MAXDEPTH?
- \circledast Maybe implementing some of these quantum attacks in Q# could give insight.
- What happens if we introduce MAXWIDTH? Or some other bound?
- How do the new oracles impact multi-target attacks? E.g. Banegas and Bernstein [BB17].

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000	00	000

Thank you.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EUROCRYPT 2015. Springer, 2015.

Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016/687, 2016.

Gustavo Banegas and Daniel J Bernstein. Low-communication parallel quantum multi-target preimage search. In *SAC 2017.* Springer, 2017.

Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum searching. *Fortschritte der Physik*, 46(4-5):493–505, 1998.

Joan Boyar and Rene Peralta. A depth-16 circuit for the AES s-box. Cryptology ePrint Archive, Report 2011/332, 2011. http://eprint.iacr.org/2011/332.

Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher, and Christian Rechberger.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

In Yuval Ishai and Vincent Rijmen, editors, *Advances in Cryptology – EUROCRYPT 2019*, pages 343–372, Cham, 2019. Springer International Publishing.

Joan Daemen and Vincent Rijmen. Specification for the advanced encryption standard (aes). Federal Information Processing Standards Publication, 197, 2001.

Craig Gidney. Halving the cost of quantum addition. *Quantum*, 2:74, June 2018.

David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algorithm for the t-count. *Quantum Information & Computation*, 14(15-16):1261–1276, 2014.

Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt. Applying grover's algorithm to AES: quantum resource estimates. In Tsuyoshi Takagi, editor, *Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings*, volume 9606 of *Lecture Notes in Computer Science*, pages 29–43. Springer, 2016.

Lov K. Grover.

A fast quantum mechanical algorithm for database search.

In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC '96, pages 212–219, New York, NY, USA, 1996. ACM.

500

Panjin Kim, Daewan Han, and Kyung Chul Jeong.

Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
0	00000	000000	000000000000000	00	000

Time-space complexity of quantum search algorithms in symmetric cryptanalysis: applying to aes and sha-2.

Quantum Information Processing, 17(12):339, Oct 2018.

AFS

Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the cost of implementing aes as a quantum circuit. Cryptology ePrint Archive, Report 2019/854, 2019. https://eprint.iacr.org/2019/854.

Alexander Maximov.

Aes mixcolumn with 92 xor gates. Cryptology ePrint Archive, Report 2019/833, 2019. https://eprint.iacr.org/2019/833.

Giulia Meuli, Mathias Soeken, Earl Campbell, Martin Roetteler, and Giovanni De Micheli.

The role of multiplicative complexity in compiling low t-count oracle circuits. *CoRR*, abs/1908.01609, 2019.

Giulia Meuli, Mathias Soeken, Martin Roetteler, Nikolaj Bjørner, and Giovanni De Micheli.

Reversible pebbling game for quantum memory management.

In Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, pages 288–291, 2019.

National Institute of Standards and Technology.

AES	Grover's search	Quantum circuits	Previous work	Our improvements	LowMC	Future directions
00	0	00000	000000	000000000000000000000000000000000000000	00	000

Submission requirements and evaluation criteria for the Post-Quantum Cryptography standardization process.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/ call-for-proposals-final-dec-2016.pdf, December 2016.

Peter Selinger.

Quantum circuits of *t*-depth one. *Phys. Rev. A*, 87:042302, Apr 2013.

L.N. Trefethen and D. Bau. *Numerical Linear Algebra*.

Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1997.

Akihiro Yamamura and Hirokazu Ishizuka.

Quantum cryptanalysis of block ciphers (algebraic systems, formal languages and computations).

2000.

Christof Zalka.

Grover's quantum searching algorithm is optimal. *Phys. Rev. A*, 60, 10 1999.

Fang Zhang and Jianxin Chen. Optimizing t gates in clifford+t circuit as $\pi/4$ rotations around paulis. *arXiv preprint arXiv:1903.12456*, 2019.

Grover's search Quantum circuits Previous work Our improvements LowMC 0 00000 000000000000 00

C Future directions

AES

Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, and Daniel Slamanig. Picnic.

Technical report, NIST, 2017.