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AES [DR01] is a block cipher standardized by NIST in ‘01.

Key lengths in {128, 192, 256} bits, block size 128 bits.

AES-128 (resp. -192, -256) uses 10 (resp. 12, 14) rounds.

round key

state

By
te
Su

b

Sh
ift
Ro

w

M
ixC

ol
um

n*

Figure: AES round design.
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The round key is expanded from the ciphers’ key, and 128 bits
are XOR’d on the state each round.

RC

RB
SB

Figure: AES-128 key expansion ‘round’. Credit: Jérémy Jean.

ShiftRow and RotByte are permutations.

MixColumn is an invertible linear transformation.

ByteSub and SubByte are byte-wise applications of the S-box,
which computes inversion in F28 (and maps 0 7→ 0).
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Grover’s search [Gro96] is a quantum algorithm for finding
elements in unsorted lists of size N.

∑N−1
i=0 |i〉 Uf G … Uf G

π
4
√

N times

Figure: Grover’s search sketch.

Uf is a quantum circuit mapping |x〉 |y〉 7→ |x〉 |y⊕ f(x)〉, where
f(x) = (x == target).

G is a “reflection around the mean” operation.
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A quantum circuit is a sequence of unitary operators (and
measurements).

Width: the maximum number of qubits used.

Depth: the number of sequential “basic” operations.

Complex operations can be constructed from simple
(universal) sets of gates. We use Clifford + T.

|a〉
|b〉
|c〉
|d〉

|a + c + d〉

|b〉
|a + d〉

|a + c〉

Figure: Quantum circuit example.
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In this work we make the following assumptions:

We only work with logical qubits.

We do not assume any particular framework (e.g. the surface
code).

Hence no costs for idle qubits or need for gates to operate
locally.

But also no speedups like free CNOT fan-outs.

Swapping qubits is free, by “rewiring” (keeping track of the
swaps).

This is not necessarily “realistic”, but is what the previous
literature on AES (and hence NIST in [Nat16]) uses.
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Now a quick look at basic tools: gates, linear programs, constant
matrix multiplication.

X gate, works as an in-place classical NOT.
|a〉 X |a⊕ 1〉

CNOT gate, works similarly to an XOR gate .
|a〉
|b〉

|a〉
|a⊕ b〉

Toffoli (aka CCNOT), works similarly to an AND gate.
|a〉
|b〉
|c〉

|a〉
|b〉
|c⊕ (a · b)〉
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Linear programs are sequences of w← x ⋆ y, for some binary
operation ⋆.

These can be easily translated into Q# by writing the appropriate
self-inverse operators (x, y, z) 7→ (x, y, z ⊕ (x ⋆ y)).

Image taken from [BP11].
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Multiplication by constant matrices:
Naively, using ancilla
qubits (b).

Rearranging
operations from the
naive version will
help.

Invertible matrices
can be inplemented
in-place by PLU
decomposing
them [TB97] (c).

And the P is for free!
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[YI00] introduces the idea of using Grover’s to attack block
ciphers with keylength k in O(2k/2) “operations” (Uf and G).

Grassl et al. [GLRS16] provide the first cost estimate for Uf
(and disregard G, we do the same!).

Component [GLRS16] design
ShiftRow, RotByte Rewiring (free)

MixColumn Multiplication by constant in F28 [x]/(x4 + 1):
Invertible linear map, hence PLU decomposition

S-box Inversion ≡ ((α · α2) · (α · α2)4 · (α · α2)16 · α64)2

in F2[x]/〈x8 + x4 + x3 + x + 1〉:
AddRoundKey Bitwise XOR/CNOT
KeyExpansion Caching of “expensive” bytes + recomputing of “cheap” ones
Rounds “Pebbling” to reduce the number of ancilla qubits
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When computing rounds, they try to tradeoff between circuit width
and depth, using a “pebbling” strategy.

Figure: Round pebbling strategy for AES-128 in [GLRS16].
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Given any block cipher C : {0, 1}k × {0, 1}n → {0, 1}n, for any
(m, c) pair there may be multiple K such that C(K,m) = c.

Hence, when doing exhaustive key search, multiple (mi, ci)
pairs may be needed to uniquely determine a key K whp.

[GLRS16] find that for AES-128 (resp. -192, -256), 3 (resp. 4,
5) pairs are needed when implementing Uf.

|k〉
|m1〉

|c1〉

|m2〉

|c2〉
|y〉

|0〉

|0〉

|0〉

AES

AES

AES†

AES†
|0〉

|0〉

|0〉

|k〉
|m1〉

|c1〉

|m2〉

|c2〉
|y⊕ ∧i ci == AESk(mi)〉

Figure: Example AES Uf for two (mi, ci) pairs.
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Overall, Grassl et al. estimate the cost of Uf as follows.

scheme #(1qCliff+CNOT) #T T-depth full depth width G-cost DW-cost

AES-128 1.55 · 286 1.19 · 286 1.06 · 280 1.16 · 281 2 953 1.37 · 287 1.67 · 292

AES-192 1.17 · 2119 1.81 · 2118 1.21 · 2112 1.33 · 2113 4 449 1.04 · 2120 1.44 · 2125

AES-256 1.83 · 2151 1.41 · 2151 1.44 · 2144 1.57 · 2145 6 681 1.62 · 2152 1.28 · 2158

Table: Circuit size for Uf as in [GLRS16].
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In 2016, NIST puts out a call for post-quantum cryptography
proposals [Nat16].

Regarding quantum computation capabilities, they suggest
having a MAXDEPTH ∈ {240, 264, 296} parameter bounding
quantum computation depth.

They also define security “categories” 1, 3, and 5, based on
the hardness of key recovery against AES-128, -192, -256.

Early termination of Grover’s search results in low success
probabilities.

Hence, due to MAXDEPTH, Grover’s search against AES needs
to be parallelised.
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For Grover’s search, Zalka [Zal99] showed that using S
machines saves only

√
S depth, optimally.

NIST’s reasoning:
Say non-parallel Grover’s search requires depth
D = x · MAXDEPTH, for some x ≥ 1 and G gates.

To cut depth by x, x2 machines are needed. Each uses ≈ G/x
gates.

Total gate count: (G/x) · x2 = G · D/MAXDEPTH.

Using D and G from [GLRS16], they deduce the security
categories’ requirements.

Figure: Definition for security categories 1, 3, and 5.
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Our initial idea: NIST cares about limiting depth, but uses
[GLRS16] which optimizes for width. What if we minimize
depth?

Hindsight: parallelisation is bad, so crucially beneficial to
minimise depth!

We also get a Q# implementation:
testable,

friendly to read/modify,

automated circuit size estimates,

easy to translate linear programs/verilog using regexes!
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We look now at our design choices for a smaller Grover oracle for
AES.

S-box: well investigated in the hardware literature.

Lots of linear programs to translate and test.

Tried various variants of [BP11].

Scooped! In concurrent indepedent work, Langenberg et
al. [LPS19] propose a similar S-box change.

They keep the same pebbling strategy of [GLRS16] and
provide only an implementation of their S-box.
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Inside their S-box, [GLRS16] use a 7 T-gates implementation
of Toffoli.

We replace Toffoli with AND gates, using a custom design by
Mathias Soeken, based on Selinger [Sel13] and Gidney [Gid18].

|a〉
|b〉
|0〉
|0〉
H

T†

T†

T
T

H S
|0〉

|a〉
|b〉
|a · b〉

(a) AND gate.

|a〉
|b〉

|a · b〉 H

S
S
X

S†
|a〉
|b〉
|0〉

(b) AND† gate.

Figure: AND gate with T-depth 1, T count 4, and “T-free” adjoint
operator. It does introduce measurements.
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KeyExpansion: instead of caching, we do in-place expansion
as necessary.

Figure: AES 192 in-place ith round key expansion.

This saves us qubits with respect to naive full expansion,
while not increasing depth due to the computations running in
parallel to the round.
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Figure: AES 192 round structure.

Indeed, rounds only require 128 bits of expanded key at every time.
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Other improvements:

We cost both the PLU-decomposed in-place MixColumn
design, and a recent, shallower (but wider) design by
Maximov [Max19].

Fix to the key uniqueness computation: 3, 4, 5 pairs are too
many!

For p ≈ 1 attacks, 2, 2, 3 pairs are enough.

As Langenberg et al. [LPS19] also noticed, we suggest using 1,
2, 2 pairs for high probability attacks (≈ 1/e, ≈ 1, ≈ 1/e)
when using unbounded Grover’s.
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Grassl et al. [GLRS16]

scheme #(1qCliff+CNOT) #T #M T-depth full depth width G-cost DW-cost psucc

AES-128 (r = 3) 1.55 · 286 1.19 · 286 0 1.06 · 280 1.16 · 281 2 953 1.37 · 287 1.67 · 292 ≈ 1
AES-192 (r = 4) 1.17 · 2119 1.81 · 2118 0 1.21 · 2112 1.33 · 2113 4 449 1.04 · 2120 1.44 · 2125 ≈ 1
AES-256 (r = 5) 1.83 · 2151 1.41 · 2151 0 1.44 · 2144 1.57 · 2145 6 681 1.62 · 2152 1.28 · 2158 ≈ 1

Langenberg et al. [LPS19]

AES-128 (r = 1) 1.46 · 282 1.47 · 281 0 1.44 · 277 1.39 · 279 865 1.10 · 283 1.17 · 289 ≈ 1/e
AES-192 (r = 2) 1.71 · 2115 1.68 · 2114 0 1.26 · 2109 1.23 · 2111 1 793 1.27 · 2116 1.08 · 2122 ≈ 1
AES-256 (r = 2) 1.03 · 2148 1.02 · 2147 0 1.66 · 2141 1.61 · 2143 2 465 1.54 · 2148 1.94 · 2154 ≈ 1/e

this work

AES-128 (IP MC, r = 1) 1.13 · 282 1.32 · 279 1.32 · 277 1.48 · 270 1.08 · 275 1665 1.33 · 282 1.76 · 285 ≈ 1/e
AES-128 (IP MC, r = 2) 1.13 · 283 1.32 · 280 1.32 · 278 1.48 · 270 1.08 · 275 3329 1.34 · 283 1.75 · 286 ≈ 1
AES-192 (IP MC, r = 2) 1.27 · 2115 1.47 · 2112 1.47 · 2110 1.47 · 2102 1.14 · 2107 3969 1.50 · 2115 1.11 · 2119 ≈ 1
AES-256 (IP MC, r = 2) 1.56 · 2147 1.81 · 2144 1.81 · 2142 1.55 · 2134 1.29 · 2139 4609 1.84 · 2147 1.45 · 2151 ≈ 1/e
AES-256 (IP MC, r = 3) 1.17 · 2148 1.36 · 2145 1.36 · 2143 1.55 · 2134 1.28 · 2139 6913 1.38 · 2148 1.08 · 2152 ≈ 1

Table: Comparison of cost estimates for Grover’s algorithm with
⌊
π
4 2k/2⌋ AES

oracle iterations, minimising G-cost (in-place MixColumn beats Maximov’s here).
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What can we do about the depth constraint? AES-128 in
MAXDEPTH = 296 is the only attack fitting.

Boyer et al. [BBHT98] propose the following when searching a
list of size N:

1. Run 0.583
√

N Grover iterations.

2. Measure. If output is wrong, go to 1.

In theory, the expected number of iterations to win becomes
0.690

√
N < π

4
√

N.

In practice, most often one needs to repeat step 1. at least
twice =⇒ 1.166

√
N > π

4
√

N iterations.
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Only chance we have is parallelising. Two strategies, using
Kim, Han, and Jeong [KHJ18] nomenclature.

“Outer parallelisation”:
Have S machines run j ≤ π

4
√

N iterations independently.

Measure a candidate solution from each machine, and
classically check them.

Total success probability is pS(j) = 1− (1− p(j))S, where p(j)
is the success probability for a single machine.

We want to reduce depth by
√

S. Then, S machines
=⇒ j = π

4

√
N
S iterations. As S→∞, pS(j)→ 0.915.

Hence there is no “outer” strategy with p ≈ 1 that saves
√

S
depth.
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Only chance we have is parallelising. Two strategies, using
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Have S machines run j ≤ π
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N iterations independently.
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Only chance we have is parallelising. Two strategies, using
Kim, Han, and Jeong [KHJ18] nomenclature.

“Outer parallelisation”:
Have S machines run j ≤ π

4
√

N iterations independently.

Measure a candidate solution from each machine, and
classically check them.

Total success probability is pS(j) = 1− (1− p(j))S, where p(j)
is the success probability for a single machine.

We want to reduce depth by
√

S. Then, S machines
=⇒ j = π

4

√
N
S iterations. As S→∞, pS(j)→ 0.915.

Hence there is no “outer” strategy with p ≈ 1 that saves
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depth.
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“Inner parallelisation”:
The total search space has size N. Partition it into S disjoint
subsets. Only one subset contains the correct key.

Have S machines run j ≤ π
4
√

N iterations, each on a different
subset of size N/S.

Measure a candidate solution from each machine, and
classically check them.

We want to reduce depth by
√

S. Again, S machines
=⇒ j = π

4

√
N
S iterations. But now, these are the right

number of iterations to find the key with p ≈ 1 in its subset of
size N/S!

In all but one subset we measure a wrong key, in the right
subset we measure the correct key. Classically check each, to
win with probability p ≈ 1.
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“Inner parallelisation”:
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“Inner parallelisation”:
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“Inner parallelisation”:
The total search space has size N. Partition it into S disjoint
subsets. Only one subset contains the correct key.

Have S machines run j ≤ π
4
√

N iterations, each on a different
subset of size N/S.

Measure a candidate solution from each machine, and
classically check them.
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number of iterations to find the key with p ≈ 1 in its subset of
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In all but one subset we measure a wrong key, in the right
subset we measure the correct key. Classically check each, to
win with probability p ≈ 1.
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“Inner parallelisation”:
The total search space has size N. Partition it into S disjoint
subsets. Only one subset contains the correct key.

Have S machines run j ≤ π
4
√

N iterations, each on a different
subset of size N/S.

Measure a candidate solution from each machine, and
classically check them.

We want to reduce depth by
√

S. Again, S machines
=⇒ j = π

4

√
N
S iterations. But now, these are the right

number of iterations to find the key with p ≈ 1 in its subset of
size N/S!

In all but one subset we measure a wrong key, in the right
subset we measure the correct key. Classically check each, to
win with probability p ≈ 1.
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There’s a further advantage of inner parallelisation, when
looking for the right key K.

Take AES-128. We said we need 2 plaintext-ciphertext pairs
to uniquely identify K ∈ K = {0, 1}128 (i.e. whp no other keys
map mi 7→ ci for i = 1, 2).

Using 1 pair, the probability of only K mapping m 7→ c exists
in K is 1/e.

Now partition K into S subsets, say K ∈ KK ⊂ K. The
probability that another “spurious” key mapping m 7→ c exists
in KK is now smaller than 1− 1/e.

Hence using inner parallelisation increases the success
probability of the attack when using 1 plaintext-ciphertext
pair. It works similarly for AES-192 and AES-256.
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scheme MD r S log2 (SKP) D W G-cost DW-cost

AES-128 240 1 1.28 · 269 −69.36 1.00 · 240 1.76 · 280 1.07 · 2117 1.76 · 2120

AES-192 240 1 1.04 · 2133 −69.05 1.00 · 240 1.72 · 2144 1.09 · 2181 1.72 · 2184

AES-256 240 1 1.12 · 2197 −69.16 1.00 · 240 1.08 · 2209 1.39 · 2245 1.08 · 2249

AES-128 264 1 1.28 · 221 −21.36 1.00 · 264 1.76 · 232 1.07 · 293 1.76 · 296

AES-192 264 1 1.04 · 285 −21.05 1.00 · 264 1.72 · 296 1.09 · 2157 1.72 · 2160

AES-256 264 1 1.12 · 2149 −21.16 1.00 · 264 1.08 · 2161 1.39 · 2221 1.08 · 2225

AES-128* 296 2 1.00 · 20 −∞ 1.08 · 275 1.63 · 211 1.34 · 283 1.75 · 286

AES-192 296 2 1.05 · 221 −∞ 1.00 · 296 1.74 · 233 1.09 · 2126 1.74 · 2129

AES-256 296 2 1.12 · 285 −85.16 1.00 · 296 1.09 · 298 1.39 · 2190 1.09 · 2194

Table: Cost estimates for inner parallelization. r is the number of
plaintext-ciphertext pairs used. SKP is the probability that spurious keys
are present in KK. All circuits use Maximov’s [Max19] MixColumns
(shallower designs have a better advantage when parallelising) except for
AES-128 at MAXDEPTH = 296.
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Some observations:

Say a candidate scheme for category 5 does a similar analysis,
and the best quantum attack with MAXDEPTH = 240 requires
S = 2230 G-cost.

Does it not meet the criteria? Nobody is going to build 2197

quantum computers anyway, so Grover is not really an attack
against AES-256 there.

Logical qubits better be free. Should we introduce MAXWIDTH?
What would it mean?

Maybe that we try to fit Grover within MAXWIDTH, compute the
success probability for the resulting attack, and then do the
same for candidates (“Cat 5, MD 240, MW x means no quantum
attack with success prob ≥ 2−...”)?
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success probability for the resulting attack, and then do the
same for candidates (“Cat 5, MD 240, MW x means no quantum
attack with success prob ≥ 2−...”)?
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Some observations:

Say a candidate scheme for category 5 does a similar analysis,
and the best quantum attack with MAXDEPTH = 240 requires
S = 2230 G-cost.

Does it not meet the criteria? Nobody is going to build 2197

quantum computers anyway, so Grover is not really an attack
against AES-256 there.

Logical qubits better be free. Should we introduce MAXWIDTH?
What would it mean?

Maybe that we try to fit Grover within MAXWIDTH, compute the
success probability for the resulting attack, and then do the
same for candidates (“Cat 5, MD 240, MW x means no quantum
attack with success prob ≥ 2−...”)?
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Finally, we can recompute NIST’s table, taking into account inner
parallelisation advantages.

NIST Security G-cost for MAXDEPTH
Strength Category source 240 264 296 approximation

1 AES-128
[Nat16] 2130 2106 274 2170/MAXDEPTH
this work 1.07 · 2117 1.07 · 293 ∗1.34 · 283 ≈ 2157/MAXDEPTH

3 AES-192
[Nat16] 2193 2169 2137 2233/MAXDEPTH
this work 1.09 · 2181 1.09 · 2157 1.09 · 2126 ≈ 2221/MAXDEPTH

5 AES-256
[Nat16] 2258 2234 2202 2298/MAXDEPTH
this work 1.39 · 2245 1.39 · 2221 1.39 · 2190 ≈ 2285/MAXDEPTH

Table: approximation displays the formula used by NIST in [Nat16] for
NIST numbers and a rough approximation that would replace the NIST
formula based on our results.
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Finally, we can recompute NIST’s table, taking into account inner
parallelisation advantages.

NIST Security G-cost for MAXDEPTH
Strength Category source 240 264 296 approximation

1 AES-128
[Nat16] 2130 2106 274 2170/MAXDEPTH
this work 1.07 · 2117 1.07 · 293 ∗1.34 · 283 ≈ 2157/MAXDEPTH

3 AES-192
[Nat16] 2193 2169 2137 2233/MAXDEPTH
this work 1.09 · 2181 1.09 · 2157 1.09 · 2126 ≈ 2221/MAXDEPTH

5 AES-256
[Nat16] 2258 2234 2202 2298/MAXDEPTH
this work 1.39 · 2245 1.39 · 2221 1.39 · 2190 ≈ 2285/MAXDEPTH

Table: approximation displays the formula used by NIST in [Nat16] for
NIST numbers and a rough approximation that would replace the NIST
formula based on our results.
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LowMC
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LowMC [ARS+15, ARS+16] is a block cipher family designed
for FHE and MPC.

It is used as part of the Picnic [ZCD+17] submission for
post-quantum digital signatures.

We used the same tools used for AES.
scheme MD r S log2 (SKP) D W G-cost DW-cost

LowMC L1 240 1 1.40 · 280 −80.48 1.00 · 240 1.08 · 291 1.25 · 2123 1.08 · 2131

LowMC L3 240 1 1.83 · 2147 −147.87 1.00 · 240 1.06 · 2159 1.65 · 2190 1.06 · 2199

LowMC L5 240 1 1.08 · 2214 −214.11 1.00 · 240 1.61 · 2225 1.99 · 2256 1.61 · 2265

LowMC L1 264 1 1.40 · 232 −32.48 1.00 · 264 1.08 · 243 1.25 · 299 1.08 · 2107

LowMC L3 264 1 1.83 · 299 −99.87 1.00 · 264 1.06 · 2111 1.65 · 2166 1.06 · 2175

LowMC L5 264 1 1.08 · 2166 −166.11 1.00 · 264 1.61 · 2177 1.99 · 2232 1.61 · 2241

LowMC L1 296 2 1.00 · 20 −∞ 1.18 · 280 1.55 · 211 1.06 · 284 1.83 · 291

LowMC L3 296 1 1.83 · 235 −35.87 1.00 · 296 1.06 · 247 1.65 · 2134 1.06 · 2143

LowMC L5 296 1 1.08 · 2102 −102.11 1.00 · 296 1.61 · 2113 1.99 · 2200 1.61 · 2209

Table: Cost estimates for parallel Grover key search against LowMC
under a depth limit MAXDEPTH with inner parallelization.
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Further research directions:

Improve the AES oracle with better S-boxes
Sacrificing simulatability, it would be possible to use a compiler
based on [GKMR14, ZC19] to automatically synthetise smaller
circuits.

An orthogonal automatic technique could be to use the
classical circuit minimizer by [MSR+19, MSC+19] to attempt
to further reduce the linear program components.

Improve the LowMC design by adopting the approach
from [DKP+19].

Redo the analysis in the surface code setting (it would require
new implementations probably, maybe a specific surface-code
compiler).
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Take some of the quantum algorithms proposed for the
candidates (most use Grover), and do a similar analysis of
their quantum component. Do they always/never/sometimes
hit MAXDEPTH?

Maybe implementing some of these quantum attacks in Q#
could give insight.

What happens if we introduce MAXWIDTH? Or some other
bound?

How do the new oracles impact multi-target attacks? E.g.
Banegas and Bernstein [BB17].
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Thank you.
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