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solving lattice problems



Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion

Lattice-related hardness assumptions are some of the most popular tools when
building quantum-resistant cryptographic primitives

The concrete hardness of the shortest vector problem (SVP) is at the core of the
security estimations for lattice-based primitives

The cost of SVP solvers is often the leading term in the cost of algorithms for
solving lattice problems



Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion

Lattice-related hardness assumptions are some of the most popular tools when
building quantum-resistant cryptographic primitives

The concrete hardness of the shortest vector problem (SVP) is at the core of the
security estimations for lattice-based primitives

The cost of SVP solvers is often the leading term in the cost of algorithms for
solving lattice problems



Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion

There are many approaches for building an SVP solver
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algorithms using black-box methods [LMv13, KMPM19, ANS18, BCSS23]

While the resulting asymptotic quantum speedups are understood, there’s not a
lot of work on their concrete cost; only sieving has been explored [AGPS20]
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Today, I present new estimates on the concrete cost of quantum enumeration with
extreme cylinder pruning (Q. Enum).

Q. Enum algorithms were first demonstrated by Aono et al. [ANS18];
asymptotically, they provide a quadratic speedup

Our work looks at the “max-depth” setting, where quantum computation is noisy,
and long serial computation causes memory to “decohere” [Nat16, Pre18]

Our results suggest that, as is the case for Grover search against block
ciphers [JNRV20], quantum speedups in this setting may not apply



Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion

Today, I present new estimates on the concrete cost of quantum enumeration with
extreme cylinder pruning (Q. Enum).

Q. Enum algorithms were first demonstrated by Aono et al. [ANS18];
asymptotically, they provide a quadratic speedup

Our work looks at the “max-depth” setting, where quantum computation is noisy,
and long serial computation causes memory to “decohere” [Nat16, Pre18]

Our results suggest that, as is the case for Grover search against block
ciphers [JNRV20], quantum speedups in this setting may not apply



Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion

Today, I present new estimates on the concrete cost of quantum enumeration with
extreme cylinder pruning (Q. Enum).

Q. Enum algorithms were first demonstrated by Aono et al. [ANS18];
asymptotically, they provide a quadratic speedup

Our work looks at the “max-depth” setting, where quantum computation is noisy,
and long serial computation causes memory to “decohere” [Nat16, Pre18]

Our results suggest that, as is the case for Grover search against block
ciphers [JNRV20], quantum speedups in this setting may not apply



Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion

Today, I present new estimates on the concrete cost of quantum enumeration with
extreme cylinder pruning (Q. Enum).

Q. Enum algorithms were first demonstrated by Aono et al. [ANS18];
asymptotically, they provide a quadratic speedup

Our work looks at the “max-depth” setting, where quantum computation is noisy,
and long serial computation causes memory to “decohere” [Nat16, Pre18]

Our results suggest that, as is the case for Grover search against block
ciphers [JNRV20], quantum speedups in this setting may not apply



Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion

Quantum computation

To estimate the cost of quantum enumeration, we work in the “circuit model”.

This is a quantum circuit of width 3, depth 5 and gate count 5.

Here the wires are qubits, the nodes are gate evaluations.

The cost of a circuit can be expressed in terms of different metrics, e.g. by
counting wires, components, depth, area. . .
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[JS19] suggest that one can compare the # of quantum gates (“G metric”) with
classical CPU cycles.
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Quantum memory

Classical memory is easy to error-correct, quantum memory is not

Currently used qubits need near-absolute-zero temperatures for data persistence;
operating on them quickly leads to signal loss

New constraint: max-depth (MD)
Consider limiting the depth of quantum circuit [Nat16]:

MD = 240 ≈ “gates that presently envisioned quantum computing architectures
are expected to serially perform in a year”

MD = 264 ≈ “gates that current classical computing architectures can perform
serially in a decade”

MD = 296 ≈ “gates that atomic scale qubits with speed of light propagation times
could perform in a millennium”
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Consequences of max-depth

Consider limiting MD ∈ {240, 264, 296}. What happens?

Attackers may be limited in the size of the instances of a hard problem that can
be solved with a quantum circuit before decoherence

Multiple quantum circuits may have to be run in parallel to solve an
cryptographically-sized instance, increasing the overall circuit size

Example: Grover search on AES
AES-256: MD < 2k/2 = 2128, what is naively required by Grover’s

Grover search almost certainly fails if stopped early; can’t read data early
=⇒ We need to account for Grover’s parallelisation.

Grover search parallelises badly [Zal99], causing the concrete quantum advantage
to strongly reduce [JNRV20].
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Lattice enumeration

Say we are looking for a short vector v ̸= 0 in a lattice L with basis (b1, . . . , bn)

Suppose we also know an upper bound R on ∥v∥

In enumeration, we explore all (or most) vectors in L of norm ≤ R, optionally
stopping when we find the first one

Conceptually, enumeration consists of depth-first search on a tree T containing
short vectors as leaves

As used in lattice reduction, in dimension n, this requires poly(n) memory, and
E[#T ] = 2 1

8 n log n+o(n) time on average [ABF+20]
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Given vectors (b1, . . . , bn), let πi(bj) be the part of bj orthogonal to b1, . . . , bi−1

In our search for v , we start guessing possible values of πn(v), by choosing points
in Z1 = {p ∈ Lat(πn(bn)) | ∥p∥ ∈ (0, R]}

These guesses are the nodes distant 1 from the root of the enumeration tree T

Given a guess g for πn(v), we try to “extend it” into a guess for πn−1(v) by
choosing points in Z2 = {p ∈ Lat(πn−1(bn−1), πn−1(bn)) | ∥p∥ ∈ (0, R]} with
πn(p) = g

These guesses are the nodes distant 2 from the root of the enumeration tree T

This search is done depth-first, stopping whenever we fail to extend a guess from
Zi to Zi+1 while maintaining norm ≤ R; we find v when it we extend a guess
from Zn−1 to Zn

We can see this as searching for a “marked leaf” in a tree, where a leaf is marked if its
norm is ≤ R.
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Quantum tree search

In 2018, Montanaro introduces two quantum tree-search algorithms, DetectMV
and FindMV [Mon18]

Given a tree T and a predicate P, DetectMV returns whether ∃ leaf ∈ T such
that P(leaf) = true in Õ(

√
T · n) evaluations of P, where #T ≤ T

By performing decision on every level, DetectMV 7→ FindMV , which returns such
a leaf

For trees with one (randomly distributed) marked leaf and #T ≈ T :

Classical average-case runtime O(#T ) 7→ quantum average case Õ(
√

#T · n)
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Montanaro’s tree search

DetectMV consists of repeating multiple Quantum Phase Estimations (QPE) of
an operator W that checks predicate P; evaluating QPE(W ) is the quantum part

Under conservative estimations, we serially evaluate
√

#T · n times W per QPE

Our objective is to lower-bound the gate-cost of FindMV(T ), while keeping the
serial quantum depth within max-depht MD
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To check the hypothetical depth of such a QPE we:

Chose a target scheme to attack (Kyber)

Lower-bound the size of W by assuming Depth(W ) = Gates(W ) = 1

Using the LWE estimator we find the required block size β to break Kyber using
the primal attack

β is the depth n of tree

From n we obtain #T by using lower bounds for the cost of enumeration with
cylinder pruning [ANSS18]

Finally, we check if the resulting circuit depth of QPE is ≤ MD
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A back of the envelope estimation

E
random
tree T

[Depth(QPE(W ))] ≈ E[
√

#T · β] ≈
√
E[#T ] · β ≈


290.3 for Kyber-512,
2166.2 for Kyber-768,

2263.7 for Kyber-1024,

Wait, don’t drag me out of the room

I do know Jensen’s inequality!
E[

√
#T ] ≤

√
E[#T ]

Just wait a handful of slides
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We plausibly don’t fit within 296 depth

We need smaller trees to enumerate

Classic trick from parallel enumeration
Precompute nodes up to level k > 1,
run FindMV on the subtrees.

We can estimate the size of subtrees
with similar techniques as for the full
tree.
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Would this work? Up to what level k do we
precompute?

k ≈ 1: in this case most of the tree
fits within the quantum enumeration
subroutine → a quadratic speedup
without pre-computation, but maybe
not our case

k ≈ n/2: we run ≈ Hn/2 :=
∣∣∣Zn/2

∣∣∣
quantum enumeration calls

=⇒ total gate-count ≈ Hn/2 ≈ cost
of classical enumeration

k ≈ n: we run some quantum
enumeration, we precomputed more
than Hn/2 classically, no advantage
over classical enumeration
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Our best chance is k ⪅ n/2.

However, running FindMV as many as Hk times may be
too much.

Try bundling! Assume 2y qRAM available

Precompute sets of 2y elements in Zk , collect them under a ‘virtual’ node v , run
FindMV over the tree T (v) with root v

Disclaimer
qRAM (a.k.a. QRACM) may be quite
costly to access [JR23]. Yet, many
quantum-classical speedups assume it.
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One last step: expected square roots

We are trying to estimate or lower-bound E[
√

#T ], but the distribution of #T is
unknown (Aono et al. [ANS18] already mention this issue)

Jensen’s inequality (E[
√

#T ] ≤
√
E[#T ]) only gives us upper bounds

Definition: Multiplicative Jensen’s gap
Let X be a random variable. We say X has multiplicative Jensen’s gap 2z if√

E[X ] = 2z E[
√

X ].

Ideally, we want an upper bound to z ; up to β = 70 we measure z ≈ 1

Without such bounds, we can run attack cost estimates as a function of z , and
see at what point the hypothetical attack becomes viable
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see at what point the hypothetical attack becomes viable
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Summarising, we obtain formulae for
The depth of the individual QPE circuits we need to run

The total number of gates we evaluate

Quantum depth

E [Depth(QPE(W ))] ≥ 1
2z

√
E [#T (v) · (n − k + 1)] · Depth(W ), for g ∈ Zk .

Quantum gate-cost

E
random
tree T

[Quantum Gates] ≈ Hk
2y · E [Gates(FindMV(T (g)))]

≥ Hk
2y · E

[√
#T (v) · (n − k + 1)

]
· Gates(W )

= Hk
2y · 1

2z

√
E [#T (v) · (n − k + 1)] · Gates(W )
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We can now try computing some numbers.

We assume either Depth(W ) = Gates(W ) = 1 (in the “query-model”) or an
estimated lower bound based on best-known quantum arithmetic circuits (in the
“circuit-model”, recent work may help [BvHJ+23])

We use the LWE-estimator to find the enumeration dimension β

We estimate sub-tree sizes using cylinder pruning lower-bounds [ANSS18]

We estimate costs for every k ≤ n, y ≤ 80, z ≤ 64

We report z , k minimising classical + quantum gate-cost
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Kyber-768 and -1024 seem out of reach

Kyber-512 within reach in the “query-model”, less clear for “circuit-model”
However AES-128 also within reach of Grover key-search in some settings...

And we are being quite strict in various parts of the computation

Hard to claim this attack obviously works

Disclaimer
Yet, we can’t fully exclude it without a clear understanding of the Jensen gap.

Can we say anything about it?
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Reasons to hope Q. Enum doesn’t work:

In our numbers we observe that the cost reduces smoothly as a funciton of z
=⇒ approximate estimates may already help

Experimental evidence up to β = 70 says z ≈ 1

We can prove lower bounds on E[
√

#T ] based on the additive and multiplicative
Jensen’s gaps, implying:

E[
√

#T ] ≥ max
{√

E[#T ] − 4
√
V[#T ], 2− 1

2 ln 2
4
√

V[#T ] ·
√
E[#T ]

}
.

But both depend on V[#T ].
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Open problems

Not much analysis on V[#T ]

#T =
n∑

k=1
|Zk | =

n∑
k=1

∣∣∣Ballk(0, R) ∩ Lat
(
πn−k+1(bn−k+1), . . . , πn−k+1(bn)

)∣∣∣

V
random
tree T

[|Ballk(0, Rk) ∩ πn−k+1(Λ)|]? V
random
tree T

[#T ]?

There’s some results for random real lattices [AEN], but unclear if they apply to
lattices during BKZ reduction
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Open problems

We’ve only covered cylinder pruning. What about discrete pruning? Or ad-hoc
pruning for quantum enumeration?

Currently searching for attack costs is an optimisation problem. Can we find a
closed formula? This would allow running it as part of “estimator” scripts.

There quite a few places where our analysis may not be tight, meaning actual
costs are likely higher.
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Conclusions

Asymptotically quadratic quantum speedups on enumeration may not hold under
max-depth constraints

Technically hard to fully exclude the viability of quantum enumeration

Speedups to the primal lattice attack on Kyber seem unlikely
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